Answer:
Explanation:
AgCl ⇄ Ag⁺ + Cl⁻
m m m
If x mole of AgCl be dissolved in one litre .
[ Ag⁺ ] [ Cl⁻ ] = 1.6 x 10⁻¹⁰
m² = 1.6 x 10⁻¹⁰
m = 1.26 x 10⁻⁵ moles
So solubility of AgCl is 1.26 x 10⁻⁵ moles / L
Mass of reactants > mass of products
Answer: Transition from X to Y will have greater energy difference.
Explanation: For studying the energy difference, we require Planck's equation.

where, h = Planck's Constant
c = Speed of light
E = Energy
= Wavelength of particle
From the equation, it is visible that the energy and wavelength follow inverse relation which means that with low wavelength value, energy will be the highest and vice-versa.
As electron A falls from X-energy level to Y-energy level, it releases blue light which has low wavelength value (around 470 nm) which means that it has high energy.
Similarly, Electron B releases red light when it falls from Y-energy level to Z-energy level, which has high wavelength value (around 700 nm), giving it a low energy value.
Energy Difference between X-energy level and Y-energy level will be more.
Answer:
33.33% = 33%
Explanation:
MgCO3(s) + 2HCl (aq) --> MgCl2(aq) + H20(l) + CO2(g)
1 mole of MCO3 will produce → 1 mole of CO2
We need to get the number of mole of CO2:
and when we have 0.22 g of CO2, so number of mole = mass / molar mass
Moles = 0.22 g / 44 g/mol = 0.005 mole
Moles of Mg = moles of CO2 = 0.005 mole
Mass of Mg = moles * molar mass
= 0.005 * 84 /mol = 0.42 g
Percent of MgCO3 by mass of Mg = 0.42 g / 1.26 * 100
=33.33 %
No - a precipitation will occur though. Potassium nitrate is soluble in water, so the potassium and nitrate ions will remain spectator ions and stay in solution. Lead (II) hydroxide is not soluble, and will precipitate out of solution to form a solid product.