The answer is D
FeCl3 + 3 NH4OH → Fe(OH)3 + 3 NH4Cl
Answer: i could be incorrect but im pretty sure the answer is, Gas surface with no rings.
Explanation:
s-s-s-science!
According to Dalton's Atomic Theory, the <em>Law of Definite Proportion is applied when a compound is always made up by a fixed fraction of its individual elements.</em> This is manifested by the balancing of the reaction.
The reaction for this problem is:
H₂ + Cl₂ → 2 HCl
1 mol of H₂ is needed for every 1 mole of Cl₂. Assuming these are ideal gases, the moles is equal to the volume. So, if equal volumes of the reactants are available, they will produce twice the given volumes of HCl.
Answer:
Conductivity meter
Explanation:
A conductivity meter is normally used to measure the amount of electrical current or conductance in a solution. Conductivity is most useful in determining the overall health of a natural water body.
A pH paper is used to determine the pH of a solution. This is done by dipping part of the paper into a solution of interest and watching the color change. The pH paper comes in a color-coded scale indicating the pH that something has when the paper turns a certain color.
An indicator is an organic compound that changes its colour depending on the pH of the solution.
Since neutralization reaction can only be monitored by monitoring the pH of the solution, a conductivity meter cannot be used to monitor the progress of a neutralization reaction since it does not monitor the change in pH of the system under study.
This is an incomplete question, here is a complete question.
Calculate the solubility of each of the following compounds in moles per liter. Ignore any acid-base properties.
CaCO₃, Ksp = 8.7 × 10⁻⁹
Answer : The solubility of CaCO₃ is, 
Explanation :
As we know that CaCO₃ dissociates to give
ion and
ion.
The solubility equilibrium reaction will be:

The expression for solubility constant for this reaction will be,
![K_{sp}=[Ca^{2+}][CO_3^{2-}]](https://tex.z-dn.net/?f=K_%7Bsp%7D%3D%5BCa%5E%7B2%2B%7D%5D%5BCO_3%5E%7B2-%7D%5D)
Let solubility of CaCO₃ be, 's'




Therefore, the solubility of CaCO₃ is, 