the answer to this question is B
Answer:
B. That energy can only be converted between different forms
Explanation:
The law of conservation of energy implies that energy can only be converted between different forms but can neither be created nor destroyed.
Energy is the ability to do work. It is very important physical quantity that is essential to all life forms.
Energy according to the law of conservation of energy is not produced neither is it destroyed.
Energy is simply transformed from one form to another.
sure its b but im preatty sur dont spell check me plz
<u>Answer:</u> The enthalpy of the formation of
is coming out to be -410.8 kJ/mol.Z
<u>Explanation:</u>
Enthalpy change is defined as the difference in enthalpies of all the product and the reactants each multiplied with their respective number of moles. It is represented as 
The equation used to calculate enthalpy change is of a reaction is:
![\Delta H^o_{rxn}=\sum [n\times \Delta H^o_f(product)]-\sum [n\times \Delta H^o_f(reactant)]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H%5Eo_f%28product%29%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H%5Eo_f%28reactant%29%5D)
For the given chemical reaction:

The equation for the enthalpy change of the above reaction is:
![\Delta H^o_{rxn}=[(1\times \Delta H^o_f_{(C_2H_2(g))})+(4\times \Delta H^o_f_{(H_2O(g))})]-[(2\times \Delta H^o_f_{(CO_2(g))})+(5\times \Delta H^o_f_{(H_2(g))})]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B%281%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28C_2H_2%28g%29%29%7D%29%2B%284%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28H_2O%28g%29%29%7D%29%5D-%5B%282%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28CO_2%28g%29%29%7D%29%2B%285%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28H_2%28g%29%29%7D%29%5D)
We are given:

Putting values in above equation, we get:
![81.1=[(1\times (226.7)})+(4\times (-241.8))]-[(2\times \Delta H^o_f_{(CO_2(g))})+(5\times (0))]\\\\\Delta H^o_f_{(CO_2(g))}=-410.8kJ/mol](https://tex.z-dn.net/?f=81.1%3D%5B%281%5Ctimes%20%28226.7%29%7D%29%2B%284%5Ctimes%20%28-241.8%29%29%5D-%5B%282%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28CO_2%28g%29%29%7D%29%2B%285%5Ctimes%20%280%29%29%5D%5C%5C%5C%5C%5CDelta%20H%5Eo_f_%7B%28CO_2%28g%29%29%7D%3D-410.8kJ%2Fmol)
Hence, the enthalpy of the formation of
is coming out to be -410.8 kJ/mol.