Answer:
When ΔS > ΔH/ T, then the reaction will proceed forward
Explanation:
- The entity that determines the whether a reaction will occur on its own in the forward direction (Spontaneity or Feasibility) is Gibb's free energy.
- Gibb's free energy is the energy available to do work. It is denoted as 'G'. It cannot be easily measured. The change (ΔG) can only be measured. ΔG = ΔH - TΔS
when ΔG is positive, The reaction is not spontaneous (reaction will not occur on its own)
When ΔG is negative, The reaction is spontaneous (reaction will occur on its own)
When ΔG is zero, the reaction is in equilibrium
Option A and E are not correct. ΔH (Enthalpy) cannot determine spontaneity
Option C and D cannot alone determine spontaneity of reaction
For reaction to be spontaneous, TΔS > ΔH
Therefore, ΔS > ΔH/T
Answer:
0.184 atm
Explanation:
The ideal gas equation is:
PV = nRT
Where<em> P</em> is the pressure, <em>V</em> is the volume, <em>n</em> is the number of moles, <em>R</em> the constant of the gases, and <em>T</em> the temperature.
So, the sample of N₂O₃ will only have its temperature doubled, with the same volume and the same number of moles. Temperature and pressure are directly related, so if one increases the other also increases, then the pressure must double to 0.092 atm.
The decomposition occurs:
N₂O₃(g) ⇄ NO₂(g) + NO(g)
So, 1 mol of N₂O₃ will produce 2 moles of the products (1 of each), the <em>n </em>will double. The volume and the temperature are now constants, and the pressure is directly proportional to the number of moles, so the pressure will double to 0.184 atm.
Answer:
The correct option is: B. 33%
Explanation:
Orbital hybridisation refers to the mixing of atomic orbitals of the atoms in order to form new hybrid orbitals. The concept of orbital hybridization is used to explain the structure of a molecule.
The sp² hybrid orbitals are formed by the hybridization of one 2s orbital and two 2p orbitals. <u>The three sp² hybrid orbitals formed have 33% s character and 67% p character.</u>
Answer:plz brainly me;)
Your answer is "A" Conductors
Nonmetals include common gasses that are found in the atmosphere, such as nitrogen and oxygen, as well as sulfur (S) and carbon too. Nonmetals are usually not good conductors of heat and electricity.
pH=-lg[H⁺]
[H⁺] is the molar concentration of hydrogen protons
both solutions have the same concentration of the monoprotic acid so they will both have the same pH
pH=-lg0.1=1 because 10 at the power of -1 is equal to 0.1 but the sign is changed