C.) hydrogen bonding interactions.
The molar mass of the gene fragment is 19182 g/mol.
What is osmotic pressure ?
Osmotic pressure is the minimum pressure which needs to be applied to a solution to prevent the inward flow of its pure solvent across a semipermeable membrane. It is also defined as the measure of the tendency of a solution to take in a pure solvent by osmosis. Potential osmotic pressure is the maximum osmotic pressure that could develop in a solution if it were separated from its pure solvent by a semipermeable membrane.
We employ the osmotic pressure equation to determine the solute's concentration, which is:
π = iMRT
Using the values in the equation above, we obtain: 19182 g/mol.
To learn more about gene fragment click on the link below:
brainly.com/question/22426204
#SPJ4
This can be done through electrolysis. Electrolysis is the separation of a substance into two or more substances that may differ from each other and from the original substance by passing an electric current through a solution that contains ions.
In the case of copper, we use a copper (II) sulphate solution which we put in a large beaker. The impure copper will be used as the positive electrode (anode) and for the negative electrode (cathode) will be a bar of pure copper.
When the electric current is switched on, the bar of pure copper which is the cathode increases greatly in size as copper ions leave the anode of impure copper and attach to the cathode. The anode becomes smaller and smaller as it loses copper ions until all that is left of it is impurities in form of a sludge beneath it.
ANSWER: B) drying paint
EXPLANATION: Car manufacturers use UV radiation to dry the paint o the vehicle. The high reflectivity of infrared radiation helps to keep the car interior cool. It also gives advantages over convection heating. It can provide both high intensity and low intensity heat and is a low cost heat source when compared in dollars per unit of energy consumed. The IR heating also doesn't penetrate deeply and apply heating only on the outer surface.