1.75 moles of copper must react to form 3.50 moles of silver metal.
Explanation:
Answer:
ΔH°f P4O10(s) = - 3115.795 KJ/mol
Explanation:
- P4O10(s) + 6H2O(l) ↔ 4H3PO4(aq)
- ΔH°rxn = ∑νiΔH°fi
∴ ΔH°rxn = - 327.2 KJ
∴ ΔH°f H2O(l) = - 285.84 KJ/mol
∴ ΔH°F H3PO4(aq) = - 1289.5088 KJ/mol
⇒ ΔH°rxn = (4)(- 1289.5088) - (6)(- 285.84) - ΔH°f P4O10(s) = - 327.2 KJ
⇒ ΔH°f P4O10(s) = - 5158.035 + 1715.04 + 327.2
⇒ ΔH°f P4O10(s) = - 3115.795 KJ/mol
Answer:
c) Check to see if there's a better medication for the patient's problem.
d) Dispense an extra dose to save the patient from having to return in case of loss or damage to one of the doses.
e ) Compare the label on the medication with the order from the physician .
Answer:
the relative molecular mass of hydrated iron (II) sulfate FeSO4.7H2O is 278.02
Explanation:
Answer:- 0.88
Solution:- Masses of silver and copper metals are given and we are asked to calculate the percentage of silver in the alloy.
mass percent of Ag = 
Mass of Ag = 17.6 g
mass of Cu = 2.40 g
mass of alloy = 17.6 g + 2.40 g = 20.0 g
Let's plug in the values in the formula:
mass percentage of Ag = 
mass percentage of Ag = 88%
So, the mass percentage of silver in sterling silver is 88% and in decimal form it is 0.88.