Answer:
= konstanta produk kelarutan
= kation dalam larutan berair
= anion dalam larutan berair
= konsentrasi relatif a dan b
DARI WEB
Divide the mass of the compound by the mass of the solvent and then multiply by 100 g to calculate the solubility in g/100g . Solubility of NaNO3=21.9g or NaNO3 x 100 g/ 25 g =87.6. Calculate the molar mass of the dissolved compound as the sum of mass of all atoms in the molecule.
Answer:
Total number of ATP molecules generated from a 32-carbon fatty acid = 206 ATP molecules
Explanation:
A 32 carbon fatty acid which undergoes complete beta-oxidation assuming that the fatty acid is fully saturated will pass through the beta-oxidation cycle 14 times to produce the following:
15 molecules of acetylCoA, 14 molecules of FADH₂, and 14 molecules of NADH.
Each of the 15 acetylCoA molecules can be further oxidized in the citric acid cycle to yield the following: 15 × 3 NADH; 15 × 1 FADH₂, and 15 ATP molecules from the substrate level phosphorylation occuring at the succinylCoA synthetase catalyzed-reaction.
Total FADH₂ produced = 15 + 14 = 29 molecules of FADH₂
Total NADH produced = 45 + 14 = 59 molecules of NADH
The FADH₂ and NADH will each donate a pair of electrons to the electron transfer flavoprotein and mitochondrial NADH dehydrogenase respectively of the electron transport chain, and about 1.5 and 2.5 molecules of ATP are generated respectively when these electrons are transfered to molecular oxygen.
Thus, number of molecules of ATP generated by 29 molecules of FADH₂ = 1.5 × 29 = 43.5 molecules of ATP.
Number of molecules of ATP generated by 59 molecules of NADH = 2.5 × 59 = 147.5
Sum of ATP generated from FADH₂ and NADH = 43.5 + 147.5 = 191 ATP molecules
Total number of ATP molecules generated = 191 + 15 = 206 ATP molecules
Total number of ATP molecules generated from a 32-carbon fatty acid = 206 ATP molecules
Answer:
0.4 moles of water produced by 6.25 g of oxygen.
Explanation:
Given data:
Mass of oxygen = 6.25 g
Moles of water produced = ?
Solution:
Chemical equation;
2H₂ + O₂ → 2H₂O
Number of moles of oxygen:
Number of moles = mass/ molar mass
Number of moles = 6.35 g/ 32 g/mol
Number of moles = 0.2 mol
Now we will compare the moles of oxygen with water:
O₂ : H₂O
1 : 2
0.2 : 2×0.2 = 0.4 mol
0.4 moles of water produced by 6.25 g of oxygen.