The isotope that is more abundant, given the data is isotope Li7
<h3>Assumption</h3>
- Let Li6 be isotope A
- Let Li7 be isotope B
<h3>How to determine whiche isotope is more abundant</h3>
- Molar mass of isotope A (Li6) = 6.02 u
- Molar mass of isotope B (Li7) = 7.02 u
- Atomic mass of lithium = 6.94 u
- Abundance of A = A%
- Abundance of B = (100 - A)%
Atomic mass = [(mass of A × A%) / 100] + [(mass of B × B%) / 100]
6.94 = [(6.02 × A%) / 100] + [(7.02 × (100 - A)) / 100]
6.94 = [6.02A% / 100] + [702 - 7.02A% / 100]
6.94 = [6.02A% + 702 - 7.02A%] / 100
Cross multiply
6.02A% + 702 - 7.02A% = 6.94 × 100
6.02A% + 702 - 7.02A% = 694
Collect like terms
6.02A% - 7.02A% = 694 - 702
-A% = -8
A% = 8%
Thus,
Abundance of B = (100 - A)%
Abundance of B = (100 - 8)%
Abundance of B = 92%
SUMMARY
- Abundance of A (Li6) = 8%
- Abundance of B (Li7) = 92%
From the above, isotope Li7 is more abundant.
Learn more about isotope:
brainly.com/question/24311846
#SPJ1
Answer: devices are powered by moving water and are different from traditional hydropower turbines in that they are placed directly in a river, ocean or tidal current. They generate power only from the kinetic energy of moving water (current).
Explanation:
Answer:
Mn2O3
Explanation:
Manga has a 3+ charge and oxygen has a 2- charge so to balance the charges there needs to be 3 oxygens for every 2 manga
Answer:
Conduction is the transfer of thermal energy from one molecule to another within an object. Conduction also happens between two objects in direct contact if they have different temperatures. The hotter molecule vibrates because of the added heat. This vibration and movement transfer the energy to the surrounding molecules. The transfer of energy continues until all the molecules have the same temperature.
Conduction takes place in solids, liquids, and gases. However, it happens fastest in solids because the molecules in solids are closely packed.
Answer:
Hence among the options a and c, option d is that the correct answer because it has rock bottom energy ( as n value increases, energy decreases as energy levels come closer).
Explanation:
The relation between energy and wavelength is:
From this equation, it's clear that wavelength and energy are inversely proportional to every other. The Lower the energy of a specific transition, the longest will the wavelength be of that specific transition.
Among the given options, options b and d are often ruled out, since those transitions produce to release of a photon because it is coming down from an excited state.