Answer:
The way in which objects exert forces on each other is described by Newton’s 3rd law of motion
Explanation:
Objects with mass exert forces on each other via the force of gravity. This force is proportional to the mass of the two interacting objects and is inversely proportional to the square of the distance between them. The factors G, M, and rare the same for all masses at the surface of the Earth.
Answer:
KE = 1/2 M V^2 = 1/2 * 25 * 10^2 = 1250 J
Check
M2 = 1/2 M1
V2 = V1 / 2
E2 = 1/2 * 1/4 E1 = E1 / 8 = 10000 / 8 = 1250 J
Answer:
Explanation:
This does not violate Newton's 1st law because the net force would still be 0 in order to produce uniform motion (aka constant velocity). The other forces acting on the vehicles is air resistance which is non-zero. So we need car internal force to counter balance this force, which require extra gas for the car.
Because the acceleration of gravity is the acceleration of gravity.
It doesn't matter what the mass of a falling object is, and it doesn't
matter whether a falling object is solid or liquid. ALL falling objects
fall with the same acceleration, reach the same speed, and hit the
ground at the same time.
If there was no air in the way, then a feather, a school bus, and a
battleship would accelerate at the same rate, fall together and hit
the ground at the same time.
When you drop a cup full of water that has holes in it, the cup and
the water fall with the same acceleration, reach the same speed,
and hit the floor at the same time. Then, THAT's the time to go
and get the mop.
Explanation:
As per the law of conservation of energy, the final mechanical energy of Lora is equal to its initial mechanical energy. So, when Lora is at the bottom of ski run then her potential energy will change into kinetic energy.
Hence, 
Now, final kinetic energy that will be at the bottom of the ski run is as follows.
Let,

=
= 282.53 + 28656.97
= 28939.502 J
Thus, we can conclude that her final kinetic energy at the bottom of the ski run is 28939.502 J.