Refer to the diagram shown below.
In 2.4 hours, the distance traveled by the first airplane heading a 51.3° at 750 mph is
a = 750*2.4 = 1800 miles.
The second airplane travels
b = 620*2.4 = 1488 mile
The angle between the two airplanes is
163° - 51.3° = 111.7°
Let c = the distance between the two airplanes after 2.4 hours.
From the Law of Cosines, obtain
c² = a² + b² - 2ab cos(111.7°)
= 3.24 x 10⁶ + 2.2141 x 10⁶
c = 2335.41 miles
Answer: 2335.4 miles
Answer: 757m/s
Explanation:
Given the following :
Mole of neon gas = 1.00 mol
Temperature = 465k
Mass = 0.0202kg
Using the ideal gas equation. For calculating the average kinetic energy molecule :
0.5(mv^2) = 3/2 nRt
Where ;
M = mass, V = volume. R = gas constant(8.31 jK-1 mol-1, t = temperature in Kelvin, n = number of moles
Plugging our values
0.5(0.0202 × v^2) = 3/2 (1 × 8.31 × 465)
0.0101 v^2 = 5796.225
v^2 = 5796.225 / 0.0101
v^2 = 573883.66
v = √573883.66
v = 757.55109m/s
v = 757m/s
The answer is B, because oxygen and sulfur are in the same group (group 6A)
Let the mass of the person be m. Total momentum is conserved (because the exterior forces on the system are balanced), especially the component in the vertical direction.
Given that,
Mass of gallon is M
Let man mass be m
Velocity of man is v
Let velocity if ballot be Vb
When the person begin to move we have
Conservation of momentum
mv + MVb=0
MVb=-mv
Vb= -(m/M) v
Given that the mass of man is less than mass of balloon. i.e. m<M
So, if m<M, then, m/M <1
Therefore, .
Vb= -(m/M) v
Vb< -v
This implies that the velocity of balloon is less than the velocity of man and if is also moving in opposite direction
So the man is moving upward, then the balloon is moving downward and it's velocity is less than the velocity of man,
The answer is C
Down with a speed less than v
The railroad tracks will expand because the heat waves make them bigger