Explanation:
The given data is as follows.
radius (r) = 3.25 cm, 
Now, we will calculate the tangential acceleration as follows.

Putting the given values into the above formula as follows.

= 
= 37.7 
Thus, we can conclude that the tangential acceleration of a point on the rim of the flywheel during this spin-up process is 37.7
.
It Is False. Liquid will not expand to fill it's container, while gas will.
Answer:

Explanation:
Hello,
In this case, since we compute the required energy via:

Whereas m is the mass which here is 70 g, C the specific heat which for water is 4.184 J/(g°C) and ΔT is the temperature difference which is:

Therefore, the energy turns out:

Best regards.
Answer: vf = 51 m/s
d = 112 m
Explanation: Solution attached:
To find vf we use acceleration equation:
a = vf - vi / t
Derive to find vf
vf = at + vi
Substitute the values
vf = 3.5 m/s² ( 8.0 s) + 23 m/s
= 51 m/s
To solve for distance we use
d = (∆v)² / 2a
= (51 m/s - 23 m/s )² / 2 ( 3.5 m/s²)
= (28 m/s)² / 7 m/s²
= 784 m/s / 7 m/s²
= 112 m