1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alex Ar [27]
3 years ago
13

The branch of science concerning heat flow and energy conversions is called _____. chemistry thermodynamics conversion science a

tomic studies
Physics
2 answers:
tatiyna3 years ago
5 0

The branch of science concerning heat flow and energy conversions is called thermodynamics. The pattern that takes place in the ecosystem regarding the flow of energy is from a higher energy state t a lower energy state. It follows the second law of thermodynamics, the entropy in which all things go into the chaotic state from a higher form into lower form.

<span> </span>

madreJ [45]3 years ago
4 0

Answer:thermodynamics

Explanation:

You might be interested in
Why are not all microorganism harmful?
son4ous [18]


In nature there are two categories of microorganisms as relating to health. Microorganisms that are considered harmful to humans are called pathogens and these cause disease. Examples include bacteria such as streptococcus which cause sore throat and salmonella which cause typhoid disease.

 There are some microorganisms which are helpful to man and they live mostly on the skin of man or in his gut and are mostly bacteria. They are collectively called bacterial normal flora.

In man the normal bacterial flora of the skin include staphylococcus found on dry skin, cornybacteria found in moist skin sites and propionibacteria in the sebaceous sites (head, neck, trunk) of the body. Normal bacterial flora of the gut include Escherichia coli.

One of the major function of bacterial flora is actually to protect our bodies  by competing for space with pathogens preventing them from gaining a foothold in our bodies.



8 0
3 years ago
A 124-kg balloon carrying a 22-kg basket is descending with a constant downward velocity of 20.0 m/ s. A I.O-kg stone is thrown
nadya68 [22]

(a) 296.6 m

The motion of the stone is the motion of a projectile, thrown with a horizontal speed of

v_x = 15.0 m/s

and with an initial vertical velocity of

v_{y0} = -20.0 m/s

where we have put a negative sign to indicate that the direction is downward.

The vertical position of the stone at time t is given by

y(t) = h + v_{0y} t + \frac{1}{2}gt^2 (1)

where

h is the initial height

g = -9.81 m/s^2 is the acceleration due to gravity

The stone hits the ground after a time t = 6.00 s, so at this time the vertical position is zero:

y(6.00 s) = 0

Substituting into eq.(1), we can solve to find the initial height of the stone, h:

0 = h + v_{0y} y + \frac{1}{2}gt^2\\h = -v_{0y} y - \frac{1}{2}gt^2=-(-20.0 m/s)(6.00 s) - \frac{1}{2}(9.81 m/s^2)(6.00 s)^2=296.6 m

(b) 176.6 m

The balloon is moving downward with a constant vertical speed of

v_y = -20 m/s

So the vertical position of the balloon after a time t is

y(t) = h + v_y t

and substituting t = 6.0 s and h = 296.6 m, we find the height of the balloon when the rock hits the ground:

y(t) = 296.6 m + (-20.0 m)(6.00 s)=176.6 m

(c) 198.2 m

In order to find how far is the rock from the balloon when it hits the ground, we need to find the horizontal distance covered by the rock during the time of the fall.

The horizontal speed of the rock is

v_x = 15.0 m/s

So the horizontal distance travelled in t = 6.00 s is

d_x = v_x t = (15.0 m/s)(6.00 s)=90 m

Considering also that the vertical height of the balloon after t=6.00 s is

d_y = 176.6 m

The distance between the balloon and the rock can be found by using Pythagorean theorem:

d=\sqrt{(90 m)^2+(176.6 m)^2}=198.2 m

(di) 15.0 m/s, -58.8 m/s

For an observer at rest in the basket, the rock is moving horizontally with a velocity of

v_x = 15.0 m/s

Instead, the vertical velocity of the rock for an observer at rest in the basket is

v_y (t) = gt

Substituting time t=6.00 s, we find

v_y = (-9.8 m/s)(6.00 s)=-58.8 m/s

(dii) 15.0 m/s, -78.8 m/s

For an observer at rest on the ground, the rock is still moving horizontally with a velocity of

v_x = 15.0 m/s

Instead, the vertical velocity of the rock for an observer on the ground is now given by

v_y (t) = v_{0y} + gt

Substituting time t=6.00 s, we find

v_y = (-20.0 m/s)+(-9.8 m/s)(6.00 s)=-78.8 m/s

6 0
3 years ago
True or false mechanical waves need a medium through which to transport energy
a_sh-v [17]

Answer:True

Explanation: The mechanical waves need a medium through which to transport energy because the perturbation travels inside of the medium so it needs molecules that connect elastically the displacement of the wave. For example the sound mainly uses the air molecules to transport the energy also the sound can be traveled in solid materials like metal rods.

4 0
3 years ago
Read 2 more answers
The product nuclei may or may not be _______
Vsevolod [243]

Answer:

i have no clue

Explanation:

8 0
3 years ago
I need homework help
KIM [24]
1) the weight of an object at Earth's surface is given by F=mg, where m is the mass of the object and g=9.81 m/s^2 is the gravitational acceleration at Earth's surface. The book in this problem has a mass of m=2.2 kg, therefore its weight is 
F=mg=(2.2 kg)(9.81 m/s^2)=21.6 N

2) On Mars, the value of the gravitational acceleration is different:g=3.7 m/s^2. The formula to calculate the weight of the object on Mars is still the same, but we have to use this value of g instead of the one on Earth: F=mg=(2.2 kg)(3.7 m/s^2)=8.1 N

3) The weight of the textbook on Venus is F=19.6 N. We already know its mass (m=2.2 kg), therefore by re-arranging the usual equation F=mg, we can find the value of the gravitational acceleration g on Venus: 
g= \frac{F}{m}= \frac{ 19.6 N}{2.2 kg}=8.9 m/s^2

4) The mass of the pair of running shoes is m=0.5 kg. Their weight is F=11.55 N, therefore we can find the value of the gravitational acceleration g on Jupiter by re-arranging the usual equation F=mg: 
g= \frac{F}{m} = \frac{11.55 N}{0.5 kg} =23.1 m/s^2

5) The weight of the pair of shoes of m=0.5 kg on Pluto is F=0.3 N. As in the previous step, we can calculate the strength of the gravity g on Pluto as 
g= \frac{F}{m} = \frac{0.3 N}{0.5 kg} =0.6 m/s^2

<span>6) On Earth, the gravity acceleration is </span>g=9.81 m/s^2<span>. The mass of the pair of shoes is m=0.5 kg, therefore their weight on Earth is 
</span>F=mg=(0.5 kg)(9.81 m/s^2)=4.9 N<span>
</span>
5 0
3 years ago
Other questions:
  • A moving cyclist sees traffic up ahead and begins slowing down with constant acceleration. After slowing down for 0.5\,\text{s}0
    14·1 answer
  • The picture on the left represents the reactants in the equation and the picture on the right represents the products. Does this
    9·1 answer
  • A man runs 650 m east and then turns and runs 850 m west. This takes him 240 seconds.
    9·1 answer
  • A tire placed on a balancing machine in a service station starts from rest and turns through 4.0 rev in 1.0 s before reaching it
    15·2 answers
  • Two copper rods are separated by a small gap at B. Rod AB has a diameter of 200mm and rod BC has a diameter of 150mm. Find the f
    12·1 answer
  • A chain reaction results when a uranium atom is struck by a/an ______________released by a nearby Uranium atom undergoing fissio
    11·1 answer
  • Can y’all please help me with the two part question?
    6·1 answer
  • The period of a wave is 20 ms (milliseconds) and its wavelength is 4 cm. Calculate:
    11·1 answer
  • Please help me to fix this sentence to sentence with more delivery and fluency
    9·2 answers
  • Part A-Circumference of a circle
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!