1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
givi [52]
3 years ago
8

Estimate the force required to bind the two protons in the He nucleus together. (Hint: Model the protons as point charges. Assum

e the diameter of the He nucleus to be approximately 10-15 m.
Physics
1 answer:
scoray [572]3 years ago
3 0

Answer:

 F = 2.30 10⁴ N

Explanation:

The force required to link two gates must be equal to or greater than the electrostatic force of repulsion, because the protons have equal charges.

                 F = k q₁ q₂ / r²

Where k is the Coulomb constant that is worth 8.99 10⁹ N m² / C²

   In this case the proton charge is 1.6 10⁻¹⁹ C and the distance between them is approximately the diameter of the core r = 10⁻¹⁵ m

Let's calculate

              F = 8.99 10⁹ (1.6 10⁻¹⁹)² / (10⁻¹⁵)²

              F = 2.30 10⁴ N

The bond strength must be equal to or greater than this value

You might be interested in
A ball of mass M collides with a stick with moment of inertia I = βml2 (relative to its center, which is its center of mass). Th
ZanzabumX [31]

Answer:

Part a)

v_2 = \frac{\frac{2\beta mL^2v_o}{d}}{(md + \frac{\beta mL^2}{d}(1 + \frac{m}{M})}

Part b)

v_1 = v_0 - \frac{m}{M}(\frac{\frac{2\beta mL^2v_o}{d}}{(md + \frac{\beta mL^2}{d}(1 + \frac{m}{M})})

Explanation:

Since the ball and rod is an isolated system and there is no external force on it so by momentum conservation we will have

Mv_o = M v_1 + m v_2

here we also use angular momentum conservation

so we have

M v_o d = M v_1 d + \beta mL^2 \omega

also we know that the collision is elastic collision so we have

v_o = (v_2 + d\omega) - v_1

so we have

\omega = \frac{v_o + v_1 - v_2}{d}

also we know

M v_o d - M v_1 d = \beta mL^2(\frac{v_o + v_1 - v_2}{d})

also we know

v_1 = v_o - \frac{m}{M}v_2

so we have

M v_o d - M(v_o - \frac{m}{M}v_2)d = \beta mL^2(\frac{v_o + v_o - \frac{m}{M}v_2 - v_2}{d})

mv_2 d = \beta mL^2\frac{2v_o}{d} - \beta mL^2(1 + \frac{m}{M})\frac{v_2}{d}

now we have

(md + \frac{\beta mL^2}{d}(1 + \frac{m}{M})v_2 = \frac{2\beta mL^2v_o}{d}

v_2 = \frac{\frac{2\beta mL^2v_o}{d}}{(md + \frac{\beta mL^2}{d}(1 + \frac{m}{M})}

Part b)

Now we know that speed of the ball after collision is given as

v_1 = v_o - \frac{m}{M}v_2

so it is given as

v_1 = v_0 - \frac{m}{M}(\frac{\frac{2\beta mL^2v_o}{d}}{(md + \frac{\beta mL^2}{d}(1 + \frac{m}{M})})

3 0
3 years ago
The acceleration of an object as a function of time is given by a(t) = (1.00 m/s2)t2. If displacement of the object between time
jolli1 [7]

not enough information is given to determine the velocity of the object at time to=0.00s

3 0
4 years ago
A tennis player strikes a tennis ball from underneath with her racket. The ball is sent straight up with an initial velocity of
Stels [109]
So the acceleration of gravity is 9.8 m/s so that’s how quickly it will accelerate downwards. You can use a kinematic equation to determine your answer. We know that initial velocity was 19 m/s, final velocity must be 0 m/s because it’s at the very top, and the acceleration is -9.8 m/s. You can then use this equation:

Vf^2=Vo^2+2ax

Plugging in values:

361=19.6x

X=18 m
6 0
3 years ago
Newton’s first law relates motion to balanced and unbalanced forces.
BlackZzzverrR [31]
True, an object at rest stays and rest and an object in motion stays in motion
8 0
3 years ago
Read 2 more answers
2+2 can someone plz tell me the pros and cons of ending life right here and now?
kari74 [83]
2+2=4, thx for the pts
8 0
3 years ago
Read 2 more answers
Other questions:
  • A person has a mass of 42.0-kg. what is the persons weight on the moon?
    7·1 answer
  • A beam of light has a wavelength of 650 nm in vacuum. (a) What is the speed of this light in a liquid whose index of refraction
    6·1 answer
  • Could anyone help with this
    9·1 answer
  • The alternating current which crosses an apparatus of 600 W has a maximum value of 2.5 A. What is efficient voltage between its
    8·1 answer
  • Find the resistance of an electric light bulb if a current of 0.08 A flows when the potential difference across the bulb is 120
    15·1 answer
  • If the acceleration of an object is zero at some instant in time, what can be said about its velocity at that time? 1. It is neg
    11·1 answer
  • Clear<br> 34. As surface area on an object decreases pressure:<br> increase<br> decrease<br> Clear
    7·1 answer
  • HUUUUURRRRRYYYYY
    9·2 answers
  • At
    8·1 answer
  • An electron moves through a region of crossed electric and magnetic fields. The electric field E = 3059 V/m and is directed stra
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!