1) 
The capacitance of a parallel-plate capacitor is given by:

where
is the vacuum permittivity
A is the area of each plate
d is the distance between the plates
Here, the radius of each plate is

so the area is

While the separation between the plates is

So the capacitance is

And now we can find the energy stored,which is given by:

2) 0.71 J/m^3
The magnitude of the electric field is given by

and the energy density of the electric field is given by

and using
, we find

Jupiter does. :) it has many storms, causing the wind
<span>Your heart speeds up to pump extra food and oxygen to the muscles. Breathing speeds up to get more oxygen and to get rid of more carbon dioxide. When a fit person, such as an athlete, exercises the pulse rate, breathing rate and lactic acid levels rise much less than they do in an unfit person.
</span>
Answer:
1. 80,000 Pa
2. 11.3 m/s
3. 12.5 m/s
Explanation:
<u>Question 1</u>
Pressure, 
Where h is the height that water is to reach, g is gravitational constant and
is the density, in this case, we assume
of pure water as 
Assuming 
P=8*10*1000=80000 Pa
<u>Question 2</u>
Pressure can also be found by the formula
where v is the velocity
Equating the new formula of pressure to the formula used in question 1 above

Notice that
is common hence

Making V the subject of the formula


In this case, h=8-1.6=6.4m and taking g as 10 m/s^{2}

Rounding off to 1 decimal place
v=11.3 m/s
<u>Question 3</u>
As already illustrated

Taking g as 9.8 and h now is 8m

v=12.52198067
Rounding off to 1 decimal place
v=12.5 m/s
Answer:
2. The metal surface exerts less frictional force because there are fewer bumps and irregularities on it than there are on the concrete.
Explanation:
Frictional force is a force that is exerted between two surfaces in contact with each other. Frictional force always opposes the direction of relative motion of the two surfaces: for instance, for a ball moving along a surface, the force of friction exerted by the surface on the ball points opposite to the direction of motion of the ball.
The magnitude of the frictional force for a ball moving on a flat surface is given by

where
is the coefficient of friction
m is the mass of the ball
g is the acceleration of gravity
The value of
depends on the type of surface involved. In particular, a smooth surface has a smaller value of
, while a rough surface will have a bigger value. In this case, we are comparing a smooth metal surface with concrete: since the metal surface has fewer bumps and irregularities than concrete, it has a smaller value of coefficient of friction, so it exerts less frictional force than concrete.