Answer:
136.36 mL
Explanation:
Here we have to use the dilution formula
From C1V1= C2V2
Where;
C1= initial concentration of the solution= 12.0 M
C2= final concentration of the solution= 2.20 M
V1 = initial volume of the solution= 25.0 ml
V2= final volume of the solution= ?????
Then recall;
C1V1=C2V2
V2 = C1V1/C2
Substituting values from the parameters given;
V2= 12.0 × 25.0 / 2.20
V2= 136.36 mL
Answer:
150 years i guess so? im nkt sure
Answer:
a. HCl.
b. 0.057 g.
c. 1.69 g.
d. 77 %.
Explanation:
Hello!
In this case, since the reaction between magnesium and hydrochloric acid is:

Whereas there is 1:2 mole ratio between them.
a) Here, we can identify the limiting reactant as that yielded the fewest moles of hydrogen gas product via the 1:1 and 2:1 mole ratios:

Thus, since hydrochloric yields fewer moles of hydrogen than magnesium, we realize it is the limiting reactant.
b) Here, we use the molar mass of gaseous hydrogen (2.02 g/mol) to compute the mass:

c) Here, we compute the mass of magnesium associated with the yielded 0.0248 moles of hydrogen:

Thus, the mass of excess magnesium turns out:

d) Finally, we compute the percent yield, considering 0.044 g is the actual yield and 0.057 g the theoretical yield:

Best regards!
Answer:
Vapour pressure of a liquid varies with temperature
Explanation:
The vapour pressure of any liquid is directly proportional to the temperature of the liquid. This implies that, as the temperature of the liquid increases, the vapour pressure increases likewise and vice versa.
Since the vapour pressure of liquid varies with the temperature of the liquid, it is essential to know the water temperature in the experiment to determine the vapour pressure of water.