To solve this we assume
that the gas is an ideal gas. Then, we can use the ideal gas equation which is
expressed as PV = nRT. At a constant temperature and number of moles of the gas
the product of PV is equal to some constant. At another set of condition of
temperature, the constant is still the same. Calculations are as follows:
P1V1 =P2V2
V2 = P1 V1 / P2
V2 = 153 x 3.00 / 203
<span>V2 = 2.26 L</span>
Answer:
6.142 moles of NaCl
Explanation:
We'll begin by writing the balanced equation for the reaction. This is given below:
2AlCl3 + 3Na2S —> Al2S3 + 6NaCl
Next, we determine the number of mole in 239.7 g of Na2S. This is illustrated below:
Mass mass of Na2S = 78.048g/mol
Mass of Na2S = 239.7g
Number of mole Na2S =..?
Mole = Mass /Molar Mass
Number of mole Na2S = 239.7/78.048 = 3.071 moles
Finally, we can obtain the number of mole of NaCl produced from the reaction as follow:
From the balanced equation above,
3 moles of Na2S reacted to produce 6 moles of NaCl.
Therefore, 3.071 moles of Na2S will react to produce = (3.071 x 6)/3 = 6.142 moles of NaCl
Answer:
Cell cycle.
Explanation:
A cell can be defined as the fundamental or basic functional, structural and smallest unit of life for all living organisms. Some living organisms are unicellular while others are multicellular in nature.
A unicellular organism refers to a living organism that possess a single-cell while a multicellular organism has many (multiple) cells.
Generally, cells have the ability to independently replicate themselves. These cells can be compared to the kind of structures found in a business or factory, where you have different workers performing different functions.
In a cell, the "workers" that perform various functions or tasks for the survival of the living organism are referred to as organelles and they include nucleus, cytoplasm, cell membrane, golgi apparatus, mitochondria, lysosomes, ribosomes, chromosomes, endoplasmic reticulum, vesicles, etc.
The regular sequence of growth and division that cells undergo is called the cell cycle. This cycle makes it possible for the cells found in living organisms to divide and produce new cells.
Basically, there are four (4) phases of the cell cycle and these are;
I. Prophase.
II. Metaphase.
III. Anaphase.
IV. Telophase.
Answer:
Acetic acid 0,055M and acetate 0,095M.
Explanation:
It is possible to prepare a 0,15M buffer of acetic acid/acetate at pH 5,0 using Henderson-Hasselblach formula, thus:
pH = pka + log₁₀ [A⁻]/[HA] <em>-Where A⁻ is acetate ion and HA is acetic acid-</em>
Replacing:
5,0 = 4,76 + log₁₀ [A⁻]/[HA]
<em>1,7378 = [A⁻]/[HA] </em><em>(1)</em>
As concentration of buffer is 0,15M, it is possible to write:
<em>[A⁻] + [HA] = 0,15M </em><em>(2)</em>
Replacing (1) in (2):
1,7378[HA] + [HA] = 0,15M
2,7378[HA] = 0,15M
[HA] = 0,055M
Thus, [A⁻] = 0,095M
That means you need <em>acetic acid 0,055M</em> and <em>acetate 0,095M</em> to obtain the buffer you need.
i hope it helps!
A free-radical substitution reaction is likely to be responsible for the observations. The reaction mechanism of a reaction like this can be grouped into three phases:
- Initiation; the "light" on the mixture deliver sufficient amount of energy such that the halogen molecules undergo homologous fission. It typically takes ultraviolet radiation to initiate fissions of the bonds.
- Propagation; free radicals react with molecules to produce new free radicals and molecules.
- Termination; two free radicals combine and form covalent bonds to produce stable molecules. Note that it is possible for two carbon-containing free-radicals to combine, leading to the production of trace amounts of long carbon chains in the product.
Initiation

where the big black dot indicates unpaired electrons attached to the atom.
Propagation






Termination
