Answer:
it will get slower and eventually she will stop jumping because there isnt enough force on the gravity causing her to go up and down
Explanation:
!!
1. The amount of energy carried by the wave is related to the Amplitude of the wave.
2. A mechanical wave requires an initial energy input, Once this initial energy is added the wave travels through the medium until all it's energy is transferred.
Answer:
D. All of the above.
Explanation:
Iron has a constant density, which means 2-kg block will have twice as much volume as 1-kg block; therefore, choice A is correct.
Inertia is defined by the equation F = ma: it measures how hard it is to change the motion of an object. The inertia of the the 1-kg solid iron is
F = 1a,
And the inertia of the 2-kg solid iron is
F = 2a,
which is twice as much that of the 1-kg block; therefore, choice B is correct.
The mass of the 2-kg block is twice as much as that of the 1-kg block; therefore, choice C is also correct.
Thus, all of the choices are correct (D).
Answer:
Change in specific internal Energy
Explanation:
Given:
- Mass of the gas, m=0.4 lb
- Initial pressure and volume are

- Final pressure and temperature are

- Heat transfer from the gas is 2.1 Btu
Since the process is isotropic we have

So the final volume of the gas is calculated.
Work in any isotropic is given by w

According to the first law of thermodynamics we have

So the Specific Internal Change is given by

So the specific Change in Internal energy is calculated.
Almost true but not quite.
That would give you the negative of the actual acceleration.
It should be the other way around:
(final v) minus (initial v), then divide by time.