The Sun is 149.6 million kilometers from the earth.
There are 8760 hours in a year.
876000 km are traveled in a year
It would take 170.776 years to reach the sun, or 171 years rather
P = IV
I = P/V = 30 / 120 = 0.25 A.
Current = 0.25A
Answer:

Explanation:
In order to solve this problem, we can do an analysis of the energies involved in the system. Basically the addition of the initial potential energy of the spring and the kinetic energy of the mass should be the same as the addition of the final potential energy of the spring and the kinetic energy of the block. So we get the following equation:

In this case, since the block is moving from rest, the initial kinetic energy is zero. When the block loses contact with the spring, the final potential energy of the spring will be zero, so the equation simplifies to:

The initial potential energy of the spring is given by the equation:

the Kinetic energy of the block is then given by the equation:

so we can now set them both equal to each other, so we get:

This new equation can be simplified if we multiplied both sides of the equation by a 2, so we get:

so now we can solve this for the final velocity, so we get:

That's what stars do all the time.
For example, in the sun (and MOST other stars), deep down in the center
of the sun's core, two atoms of Hydrogen get squashed together so hard
that they blend into one atom of Helium AND release some energy.
That's where the sun's energy all comes from. It's called "nuclear fusion".
It needs tremendous temperature and pressure to happen. We know how
to do it, but we can't control it. So far, the only thing we've ever been able
to use it for is Hydrogen bombs.
There are 92 elements on the Periodic Table that are found in nature,
plus another 20 or so that have been made in the laboratory, but only
a few atoms of them.
Answer:
(1) passed through the foil
Explanation:
Ernest Rutherford conducted an experiment using an alpha particle emitter projected towards a gold foil and the gold foil was surrounded by a fluorescent screen which glows upon being struck by an alpha particle.
- When the experiment was conducted he found that most of the alpha particles went away without any deflection (due to the empty space) glowing the fluorescent screen right at the point of from where they were emitted.
- While a few were deflected at reflex angle because they were directed towards the center of the nucleus having the net effective charge as positive.
- And some were acutely deflected due to the field effect of the positive charge of the proton inside the nucleus. All these conclusions were made based upon the spot of glow on the fluorescent screen.