Answer:
The power in this flow is 
Explanation:
Given that,
Distance = 221 m
Power output = 680 MW
Height =150 m
Average flow rate = 650 m³/s
Suppose we need to calculate the power in this flow in watt
We need to calculate the pressure
Using formula of pressure

Where,
= density
h = height
g = acceleration due to gravity
Put the value into the formula


We need to calculate the power
Using formula of power

Put the value into the formula


Hence, The power in this flow is 
Your answer for the question is B c e
Answer:
<em>Heat of the reservoir is 461.38 K or 188.1 °C</em>
<em>The heating load is 18.705 kW</em>
Explanation:
COP = 8.7
working temperature
= 248 °C = 248 + 273.3 = 521.3 K
work power W = 2.15 kW
reservoir temperature
= ?
heating load Q = ?
We know that
COP = Q/W
Q = COP x W = 8.7 x 2.15 = <em>18.705 kW</em>
Also,
COP =
= 
8.7 = 
4535.31 - 8.7
= 521.3
4535.31 - 521.3 = 8.7
4014.01 = 8.7
= 4014.01/8.7 = <em>461.38 K</em>
or 461.38 -273.3 = <em>188.1 °C</em>
change ms into s , thus 1/ 1000
679.0034 / 1000
6.790034 s .
Answer:
The answer is B.
Explanation:
This is because the loyalists did not agree with fighting back against Britain and wanted to remain a part of Britain, while the other answers show examples of people who wanted to break away from or rebel against Britain