A. When we convert 37.4 mL to ML, the result obtained is 3.74×10¯⁸ ML
B. When we convert 689 km/hr to m/s, the result obtained is 191.39 m/s
C. When we convert 34.5 m² to mm², the result obtained is 3.45×10⁷ mm²
<h3>A. How to convert millimeters (mL) to megaliter (ML)</h3>
- Volume (mL) = 37.4 mL
- Volume (ML) =?
1 mL = 1×10¯⁹ ML
Therefore,
37.4 mL = 37.4 × 1×10¯⁹
37.4 mL = 3.74×10¯⁸ ML
Thus, 37.4 mLis equivalent to 3.74×10¯⁸ ML
<h3>B. How to convert 689 km/hr to m/s</h3>
Conversion scale
3.6 Km/hr = 1 m/s
Therefore,
689 km/hr = 689 / 3.6
689 km/hr = 191.39 m/s
Thus, 689 km/hr is equivalent to 191.39 m/s
<h3>C. How to convert 34.5 m² to mm²</h3>
Conversion scale
1 m² = 1×10⁶ mm²
Therefore,
34.5 m² = 34.5 × 1×10⁶
34.5 m² = 3.45×10⁷ mm²
Thus, 34.5 m² is equivalent to 3.45×10⁷ mm²
Learn more about conversion:
brainly.com/question/2139943
#SPJ1
Answer
given,
initial speed of merry-go-round = 0 rad/s
final speed of merry-go-round = 1.5 rad/s
time = 7 s
Radius of the disk = 6 m
Mass of the merry-go-round = 25000 Kg
Moment of inertia of the disk


I = 450000 kg.m²
angular acceleration



we know,



The horizontal displacement of a projectile launched at an angle
The gravitational potential energy
gpe = mgh

Answer:
Examples of man-made objects that spread an impulse over a large amount of time are "airbags" in vehicles and "arrestor beds" (for trucks).
Explanation:
The question above is highly related to the topic about "Impulse" in Physics.
"Impulse"<em> refers to an object's change in momentum (the amount of motion in an object) when a force acts upon it for an interval time.</em> When it comes to providing safety to people when it comes to vehicular crashes, impulse plays a vital role.
Let's take the example of airbags in vehicles. Once a vehicle collides with another object, the driver is carried by a forward motion. Without airbags, the time is normally shorter for the driver to be stopped by the windshield. This results to a greater force. However, with the presence of air-bags, the driver will hit the airbag, instead of the windshield. <u>This will lengthen the time of the impact, thus reducing the force.</u>
Another example are the arrestor beds for trucks. Arrestor beds have been designed in order for trucks to stop, since it's hard to maneuver them. <u>With the help of arrestor beds, trucks are able to come to a stop with a longer time interval, but decreased force.</u>