Answer:
The general shape of a frequency distribution. For many data sets, statisticians use this information to determine whether there is a “normal” distribution of values. In normal distributions, the mean, median, and mode are the same. Whether the distribution is symmetrical or skewed in a certain direction. If the data is skewed to the right, this shows the mean will be greater than the median. Similarly, if the data is skewed left, the mean will be less than the median. The symmetry, or asymmetry, of the chart can help statisticians calculate probability. The modality of the data set. This means how many peaks exist in the data. For normal distributions, there will be one peak, or mode, in the data set.
Explanation:
i just got it right on edgenuity :)
Answer:
You wouldnt fall you would be sucked and you would lose all air supply and you lungs would pop
Explanation:
Answer:
Technician A says that this is the normal operation of the ETC self -test is the correct answer.
Explanation:
An engine control unit (ECU), also widely referred to as an engine control module (ECM), is a type of electronic control device that controls an internal combustion engine with a series of actuators to ensure maximum engine performance.
It achieves so by reading values from a multitude of sensors within the engine bay, translating data using multidimensional feedback maps (the so-called lookup tables) and modifying the actuators.
Mechanically fixed and dynamically regulated by mechanical and pneumatic means, air-fuel combination, ignition time, and idle speed were before ECUs.
As soon as the system gets battery voltage, after ignition is turned, the efi computer makes a self-test of all the actuators and sensors, included the ETC.
Answer:
0.976 c
Explanation:
= velocity of object 1 relative to earth = 0.80 c
= velocity of object 2 relative to object 1 = 0.80 c
= velocity of object 2 relative to earth
Velocity of object 2 relative to earth is given as


= 0.976 c