Answer:
The distance of stars and the earth can be averagely measured by using the knowledge of geometry to estimate the stellar parallax angle(p).
From the equation below, the stars distances can be calculated.
D = 1/p
Distance = 1/(parallax angle)
Stellar parallax can be used to determine the distance of stars from an observer, on the surface of the earth due to the motion of the observer. It is the relative or apparent angular displacement of the star, due to the displacement of the observer.
Explanation:
Parallax is the observed apparent change in the position of an object resulting from a change in the position of the observer. Specifically, in the case of astronomy it refers to the apparent displacement of a nearby star as seen from an observer on Earth.
The parallax of an object can be used to approximate the distance to an object using the formula:
D = 1/p
Where p is the parallax angle observed using geometry and D is the actual distance measured in parsecs. A parsec is defined as the distance at which an object has a parallax of 1 arcsecond. This distance is approximately 3.26 light years
Answer:
Explanation:
Given:
Steam Mass rate, ms = 1.5 kg/min
= 1.5 kg/min × 1 min/60 sec
= 0.025 kg/s
Air Mass rate, ma = 100 kg/min
= 100 kg/min × 1 min/60 sec
= 1.67 kg/s
A.
Extracting the specific enthalpy and temperature values from property table of “Saturated water – Pressure table” which corresponds to temperature at 0.07 MPa.
xf, quality = 0.9.
Tsat = 89.9°C
hf = 376.57 kJ/kg
hfg = 2283.38 kJ/kg
Using the equation for specific enthalpy,
hi = hf + (hfg × xf)
= 376.57 + (2283.38 × 0.9)
= 2431.552 kJ/kg
The specific enthalpy of the outlet, h2 = hf
= 376.57 kJ/kg
B.
Rate of enthalpy (heat exchange), Q = mass rate, ms × change in specific enthalpy
= ms × (hi - h2)
= 0.025 × (2431.552 - 376.57)
= 0.025 × 2055.042
= 51.37455 kW
= 51.38 kW.
Hi there!
Recall the equation for centripetal force:

We can rearrange the equation to solve for 'r'.
Multiply both sides by r:

Divide both sides by Fc:

Answer:
A skater glides along a circular path. She defines a certain point on the circle as her origin. Later on, she passes through a point at which the distance she has traveled along the path from the origin is smaller than the magnitude of her displacement vector from the origin.
So here in circular motion of the skater we can see that the total path length of the skater is along the arc of the circle while we can say that displacement is defined as the shortest distance between initial and final position of the object.
So it is not possible in any circle that arc-length is less than the chord joining the two points on the circle
As we know that arc length is given as

length of chord is given as

so here


so we have

Line of code will call force with a value of 10 for mass and a value of 9.81 for acceleration is force(10, 9.81).
<h3 /><h3>Line of code for force and acceleration</h3>
- In mechanics, acceleration refers to the rate at which an object's velocity with respect to time varies.
- Acceleration is a vector quantity (in that they have magnitude and direction).
- The direction of an object's acceleration is determined by the direction of the net force acting on it.
- Newton's Second Law states that the combined effect of two factors determines how much an item accelerates.
- The size of the net balance of all external forces acting on the object is, in accordance with the materials used to create it.
- It inversely proportional to its mass, whereas the magnitude of the net resultant force is directly proportional to the net force.
def force(mass, acceleration):
force_val = mass*acceleration
return force_val
10 is assigned to mass and 9.81 is assigned to acceleration
def force(10, 9.81)
So, Line of code will call force with a value of 10 for mass and a value of 9.81 for acceleration is force(10, 9.81).
Learn more about acceleration here:
brainly.com/question/460763
#SPJ4