"<span>The current is the same at all points" is the one among the following choices given in the question that answers the question correctly. The correct option among all the options that are given in the question is the fifth option or the last option. I hope that this is the answer that has come to your desired help.</span>
Answer:
65.87 s
Explanation:
For the first time,
Applying
v² = u²+2as.............. Equation 1
Where v = final velocity, u = initial velocity, a = acceleration, s = distance
From the question,
Given: u = 0 m/s (from rest), a = 1.99 m/s², s = 60 m
Substitute these values into equation 1
v² = 0²+2(1.99)(60)
v² = 238.8
v = √238.8
v = 15.45 m/s
Therefore, time taken for the first 60 m is
t = (v-u)/a............ Equation 2
t = (15.45-0)/1.99
t = 7.77 s
For the final 40 meter,
t = (v-u)/a
Given: v = 0 m/s(decelerates), u = 15.45 m/s, a = -0.266 m/s²
Substitute into the equation above
t = (0-15.45)/-0.266
t = 58.1 seconds
Hence total time taken to cover the distance
T = 7.77+58.1
T = 65.87 s
Italian physicist Alessandro Volta discovered that particular chemical reactions could produce electricity, and in 1800 he constructed the voltaic pile (an early electric battery) that produced a steady electric current, and so he was the first person to create a steady flow of electrical charge.
Answer:
C) For every action, there is an equal and opposite reaction
Explanation:
Newton's Third Law
For every force, there is an equal and opposite reaction time. Explains why forces act in pairs.
Brainliest?
Answer:
The height reached by the material on Earth is 91 km.
Explanation:
Given that,
Mass
Radius = 1821 km
Height
Suppose we need to find that how high would this material go on earth if it were ejected with the same speed as on Io?
We need to calculate the acceleration due to gravity on Io
Using formula of gravity
Put the value into the formula
Let v be the speed at which the material is ejected.
We need to calculate the height
Using the formula of height
Using ratio of height of earth and height of Io
Put the value into the formula
Hence, The height reached by the material on Earth is 91 km.