Answer:
avriage force F = 2722.5 N
Explanation:
For this problem we can use Newton's second law, to calculate the average force and acceleration we can find it by kinematics.
vf² = v₀² - 2 ax
The final carriage speed is zero (vf = 0)
0 = v₀² - 2ax
a = v₀² / 2x
a = 1.1²/(2 0.200)
a = 3.025 m / s²
a = 3.0 m/s²
We calculate the average force
F = ma
F = 900 3,025
F = 2722.5 N
Answer:
Explanation:
We Often solve the the integral neutron transport equation using the collision probability (CP) method which usually requires flat flux (FF) approach. In this research, it has been carried out in the cylindrical nuclear fuel cell with the spatial of mesh with quadratic flux approach. This simply means that the neutron flux at any region of the nuclear fuel cell is forced to follow the pattern of a quadratic function.
Furthermore The mechanism may be referred to as the process of non-flat flux (NFF) approach. The parameters that calculated in this study are the k-eff and the distribution of neutron flux. The result shows that all parameters are in accordance with the result of SRAC.
Answer:
20 kg
Explanation:
remember the equation f=ma.
100 N=force
5 m/s2= acceleration
so you need to divide force by acceleration: 100 N/ 5 m/s2= 20 kg, to get the mass.
The cube has 6 equal, square, foil faces. The mass of foil for each face is (380/6) milligrams.
The surface area of each piece is (380)/(6•11) cm^2.
The length of each side of the piece is √(380/6•11) cm
That's about 2.4 cm .
It's a cute little foil cube, just under 1-inch each way.