1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dolphi86 [110]
3 years ago
13

The distance between the earth and sun is 1.5 x 108 kilometers and the speed of light is 3.00 x 108 meters per second. Calculate

the time, in minutes, it takes for light to travel from the sun to earth. Round your answer to the correct number of significant figures (consider all conversion factors to be exact numbers), and be sure to include units in your answer in the form: "
Physics
1 answer:
butalik [34]3 years ago
3 0

Answer:

time = 8.3333 minutes.

Explanation:

distance between earth and sun = 1.5 * 10^{8}km

speed of light = 3* 10^{8}m/s

convert the distance unit from km to m so we can have uniform units.

distance between earth and sun = 1.5 *10^{8}*1000m

distance between earth and sun = 1.5 * 10^{11}m

speed = distance /time

time = distance / speed

time = \frac{1.5*10^{11} }{3*10^{8} }

= 0.5*10^{3}

time =500 sec

time = 500/60 minutes

time = 8.3333 minutes.

You might be interested in
A diver jumps off a cliff 50m high and needs to clear the rock that extend outward 5.0m from the base of the cliff. The diver ju
igor_vitrenko [27]

Answer:

He should run at least at 1.5 m/s

The diver will enter the water at an angle of 87° below the horizontal.

Explanation:

Hi there!

The position and velocity of the diver are given by the following vectors:

r = (x0 + v0x · t, y0 + v0y · t + 1/2 · g · t²)

v = (v0x, v0y + g · t)

Where:

r = position vector at time t

x0 = initial horizontal position

v0x = initial horizontal velocity

t = time

y0 = initial vertical position

v0y = initial vertical velocity

g = acceleration due to gravity (-9.8 m/s² considering the  upward direction as positive)

v = velocity vector at time t

Please, see the attached figure for a description of the problem. Notice that the origin of the frame of reference is located at the jumping point so that x0 and y0 = 0.

We know that, to clear the rocks, the position vector r final (see figure) should be:

r final = ( > 5.0 m, -50 m)

So let´s find first at which time the y-component of the vector r final is - 50 m:

y = y0 + v0y · t + 1/2 · g · t²

-50 m = 2.1 m/s · t - 1/2 · 9.8 m/s² · t²

0 = -4.9 m/s² · t² + 2.1 m/s · t + 50 m

Solving the quadratic equation

t = 3.4 s

Now, we can calculate the initial horizontal velocity using the equation of the x-component of the position vector knowing that at t =3.4 the horizontal component should be greater than 5.0 m:

x = x0 + v0x · t      (x0 = 0)

5.0 m < v0x · 3.4 s

v0x > 5.0 m / 3.4 s

v0x > 1.5 m/s

The initial horizontal velocity should be greater than 1.5 m/s

To find the angle at which the diver enters the water, we have to find the magnitude of the final velocity (vector vf in the figure). We already know the magnitude of the x-component of the vector vf, since the horizontal velocity is constant. So:

vfx > 1.5 m/s

Now, let´s calculate vfy:

vfy = v0y + g · t

vfy = 2.1 m/s - 9.8 m/s² · 3.4 s

vfy = -31 m/s

Let´s calculate the minimum magnitude that the final velocity will have if the diver safely clears the rocks. Let´s consider the smallest value allowed for vfx: 1.5 m/s. Then:

|v| = \sqrt{(1.5 m/s)^{2} + (31m/s)^{2}} = 31 m/s

Then the final velocity of the diver will be greater or equal than 31 m/s.

To find the angle, we have to use trigonometry. Notice in the figure that the vectors vf, vfx and vy form a right triangle in which vf is the hypotenuse, vfx is the adjacent side and vfy is the opposite side to the angle. Then:

cos θ = adjacent / hypotenuse = vfx / vf = 1.5 m/s / 31 m/s

θ = 87°

The diver will enter the water at an angle of 87° below the horizontal.

8 0
3 years ago
The wavelength of visible light is about 5500 times longer than the wavelength of x-rays. If you represent the wavelenth of an x
Pie

Answer:

458.33 ft

Explanation:

We are given that

Wavelength of of an x- ray photon=1 in

Wavelength of of an x- ray photon==\frac{1}{12}ft

1 in=\frac{1}{12}feet

We have to find the  length of line (in feet) drawn by you to represent the wavelength of visible light.

According to question

Wavelength of visible light=5500\times \frac{1}{12} ft

Wavelength of visible light=\frac{5500}{12}ft

Wavelength of visible light=458.33 ft

Hence, the 458.33 ft line must drawn  by you to represent the wavelength of visible light.

6 0
3 years ago
PLEASE HELP! HURRY. ALMOST OUT OF TIME
IRISSAK [1]

Answer:

balanced hurry up fam

gurry hurry hurry

6 0
3 years ago
Read 2 more answers
HELP ASAP PLEASE!!!
blagie [28]

Answer: A

Explanation:Earthquakes occur on faults - strike-slip earthquakes occur on strike-slip faults, normal earthquakes occur on normal faults, and thrust earthquakes occur on thrust or reverse faults. When an earthquake occurs on one of these faults, the rock on one side of the fault slips with respect to the other.

4 0
3 years ago
Read 2 more answers
Consider only the first major feature, which concerns observed patterns of motion in the solar system. Scientifically, which of
anzhelika [568]

Answer:

All the planets have nearly circular orbit except the Pluto

Explanation:

Planets closer to the Sun move around their orbits at a very high speed than planets farther from the Sun.

All the planets except Pluto, orbit the Sun in nearly the same plane.

All the planets have nearly circular orbits except Pluto because of it's distance from the sun which is over 5,000,000,000km

7 0
3 years ago
Other questions:
  • 1. Which mathematical representation correctly identifies impulse?
    6·1 answer
  • A example of a substance that has low pH is
    13·1 answer
  • When you push a 1.90-kg book resting on a tabletop, you have to exert a force of 2.10 N to start the book sliding. Once it is sl
    5·1 answer
  • By how much does the earth-Sun distance change? 300,000 miles 500,000 miles 3,000,000 miles 3,500 miles
    12·1 answer
  • Our Sun emits most of its radiation at a wavelength of 550 nm. If a star were 3.50 times hotter than our Sun, it would emit most
    12·1 answer
  • the resistor of values 6 ohm,6 ohm are connected in series and 12 ohm are connected in parallel. the equivalent resistance of th
    7·1 answer
  • Help me with this please ​
    10·2 answers
  • A yellow ball with a mass of 2 kg is rolling across the floor at 3 m/s. A red ball with a mass of 3 kg is rolling across the sam
    15·2 answers
  • Ideal mechanical advantage is equal to the displacement of the effort force divided by the displacement of the load.
    5·1 answer
  • ? Why might the expejiment need to be repeated when the hypothesis
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!