1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dolphi86 [110]
3 years ago
13

The distance between the earth and sun is 1.5 x 108 kilometers and the speed of light is 3.00 x 108 meters per second. Calculate

the time, in minutes, it takes for light to travel from the sun to earth. Round your answer to the correct number of significant figures (consider all conversion factors to be exact numbers), and be sure to include units in your answer in the form: "
Physics
1 answer:
butalik [34]3 years ago
3 0

Answer:

time = 8.3333 minutes.

Explanation:

distance between earth and sun = 1.5 * 10^{8}km

speed of light = 3* 10^{8}m/s

convert the distance unit from km to m so we can have uniform units.

distance between earth and sun = 1.5 *10^{8}*1000m

distance between earth and sun = 1.5 * 10^{11}m

speed = distance /time

time = distance / speed

time = \frac{1.5*10^{11} }{3*10^{8} }

= 0.5*10^{3}

time =500 sec

time = 500/60 minutes

time = 8.3333 minutes.

You might be interested in
Your friend from France came to visit you when she was packing she went on weather.com and found that the average temperature in
Marina CMI [18]

Answer:

Because there is not as much cold as it was in France.

Explanation:

The average temperature in France during January ranges from 2.7° to 7.2° celsius which makes it the coldest month of the year. But since she comes to know that average temperature in Annville ranges 31° celsius which implies that the temperature is normal there and therefore, she packs sleeveless tops and shorts. Coats would not be required in a hot weather and hence, she does not pack it.

8 0
3 years ago
A 500 kg dragster accelerates from rest to a final speed of 100 m/s in 400 m (about a quarter of a mile) and encounters an avera
Fantom [35]
In order to accelerate the dragster at a speed v_f = 100 m/s, its engine must do a work equal to the increase in kinetic energy of the dragster. Since it starts from rest, the initial kinetic energy is zero, so the work done by the engine to accelerate the dragster to 100 m/s is
W= K_f - K_i = K_f =  \frac{1}{2}mv_f^2=2.5 \cdot 10^6 J

however, we must take into account also the fact that there is a frictional force doing work against the dragster, and the work done by the frictional force is:
W_f = F_f d = -(1200 N)(400 m)= -4.8 \cdot 10^5 J
and the sign is negative because the frictional force acts against the direction of motion of the dragster.

This means that the total work done by the dragster engine is equal to the work done to accelerate the dragster plus the energy lost because of the frictional force, which is -W_f:
W_t = W + (-W_f)=2.5 \cdot 10^6 J+4.8 \cdot 10^5 J=2.98 \cdot 10^6 J

So, the power delivered by the engine is the total work divided by the time, t=7.30 s:
P= \frac{W}{t}= \frac{2.98 \cdot 10^6 J}{7.30 s}=4.08 \cdot 10^6 W

And since 1 horsepower is equal to 746 W, we can rewrite the power as
P=4.08 \cdot 10^6 W \cdot  \frac{1 hp}{746 W} =547 hp



3 0
3 years ago
Read 2 more answers
Angular Velocity The Moon rotates once on its axis in 27.3 days. Its radius is 27.3 days
dolphi86 [110]
B is the answer I’m sure
5 0
2 years ago
A hot-air balloon is 11.0 m above the ground and rising at a speed of 7.00 m/s. A ball is thrown horizontally from the balloon b
Nesterboy [21]

Answer:

18.6 m/s

Explanation:

h = Initial height of the balloon = 11 m

v_{o} = initial speed of the ball

v_{oy} = initial vertical speed of the ball = 7 m/s

v_{ox} = initial horizontal speed of the ball = 9 m/s

initial speed of the ball is given as

v_{o} = \sqrt{v_{ox}^{2} + v_{oy}^{2}} = \sqrt{9^{2} + 7^{2}} = 11.4 m/s

v_{f} = final speed of the ball as it strikes the ground

m = mass of the ball

Using conservation of energy

Final kinetic energy before striking the ground = Initial potential energy + Initial kinetic energy

(0.5) m v_{f}^{2} = (0.5) m v_{o}^{2} + mgh \\(0.5) v_{f}^{2} = (0.5) v_{o}^{2} + gh\\(0.5) v_{f}^{2} = (0.5) (11.4)^{2} + (9.8)(11)\\(0.5) v_{f}^{2} = 172.78\\v_{f} = 18.6 m/s

7 0
3 years ago
Read 2 more answers
What is the angular speed of the tip of the minute hand on a clock
julsineya [31]

Answer:

Its angular speed is 0.105 rad /s. The minute hand of a clock takes 60 minutes = 60 x 60 seconds to complete one rotation.

Hope this Helps!!

Have a nice day :)

Explanation:

4 0
3 years ago
Other questions:
  • An electron and a proton are held on an x axis, with the electron at x = + 1.000 m and the proton at x = - 1.000 m.how much work
    5·1 answer
  • What brand of soda contains the most caffeine? the dependent variable is the most caffeine
    15·1 answer
  • The height of the Empire State Building is 318.00 meters. If a stone is dropped from the top of the building, what is the stone'
    13·1 answer
  • How do you find the velocity of an object?
    11·1 answer
  • A -kilogram car travels at a constant speed of 20. meters per second around a horizontal circular track. The diameter of the tra
    7·1 answer
  • The diagram is being used to illustrate the second law of thermodynamics, where Qh represents a hot object and Qc represents a c
    6·2 answers
  • A mass of 0.26 kg on the end of a spring oscillates with a period of 0.45 s and an amplitude of 0.15 m .a) Find the velocity whe
    10·1 answer
  • The Tevatron acceleator at the Fermi National Accelerator Laboratory (Fermilab) outside Chicago boosts protons to 1 TeV (1000 Ge
    15·1 answer
  • ILL MARK BRAINLIEST
    12·1 answer
  • A 1000-kg sports car of mass accelerates from rest to 20 m/s in 6.6 s. What is the frictional force exerted by the road on the c
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!