Answer:
a = 3.27 m/s²
T = 275 N
Explanation:
Given that:
Mass m₁ = 42.p0 kg
Mass m₂ = 21.0 kg
Consider both masses to be in a whole system, then:
The acceleration can be determined as:

Making acceleration the subject in the above formula;




a = 3.27 m/s²
in the string, the tension is calculated using the formula:



T = 274.68 N
T ≅ 275 N
Gravity pulls to the centre of the earth. A ship floats in water because the water pushing it up (upthrust) is equal to the force<span> of gravity (weight) pulling it </span>down<span>. Friction also occurs when objects move through air. This is </span>called<span>air resistance.</span>
I believe the term Frequency is what you are looking for.
Answer:
Explanation:
We shall consider direction towards left as positive Let the required velocity be v and let v makes an angle φ
Applying law of conservation of momentum along direction of original motion
m₁ v₁ - m₂ v₂ = m₂v₃ - m₁ v₄
0.132 x 1.25 - .143 x 1.14 = 1.03 cos43 x .143 - v cos θ
v cos θ = .8
Applying law of conservation of momentum along direction perpendicular to direction of original motion
1.03 sin 43 x .143 = .132 x v sinθ
v sinθ = .76
squaring and adding
v² = .76 ² + .8²
v = 1.1 m /s
Tan θ = .76 / .8
θ = 44°
Answer:
Option 5.
Explanation:
Many of the properties of water like high specific heat, cohesion, high vaporization heat, etc can be contributed to the polar nature of water molecule.
Water being a polar molecule as it contains positively charged hydrogen and an electro-negative oxygen which results in uneven or non uniformity in sharing of electrons which leads to dipole formation and hence polarization of the molecule due to which it attracts its neighboring molecules.
This polar nature imparts the properties like cohesion, surface tension , adhesion, etc due to the presence of hydrogen bonds in water molecule.