We need to use the kinematic equation
S=ut+(1/2)at^2
where
S=displacement (+=up, in metres)
u=initial velocity (m/s)
t=time (seconds)
a=acceleration (+=up, in m/s^2)
Substitute values
S=displacement = 1.96-2.27 = -0.31 m (so that shot does not hit his head)
u=11.1
a=-9.81 (acceleration due to gravity)
-0.31=11.1t+(1/2)(-9.81)t^2
Rearrange and solve for t
-4.905t^2+11.1t-0.31=0
t=-0.02756 or t=2.291 seconds
Reject the negative root to give
t=2.29 seconds (to 3 significant figures)
A mechanical wave<span> is a </span>wave<span> that is an oscillation of </span>matter<span>, and therefore transfers energy through a </span>medium.[1]<span> While waves can move over long distances, the movement of the </span>medium of transmission<span>—the material—is limited. Therefore, oscillating material does not move far from its initial equilibrium position. Mechanical waves transport energy. This energy propagates in the same direction as the wave. Any kind of wave (mechanical or electromagnetic) has a certain energy. Mechanical waves can be produced only in media which possess elasticity and inertia.</span>
Explanation:
→ Volume of cone = πr² × h/3
Here,
- Radius (r) = 13 cm
- Height (h) = 27 cm
→ Volume of cone = π(13)² × 27/3 cm³
→ Volume of cone = 169π × 9 cm³
→ Volume of cone = 1521π cm³
→ Volume of cone = 1521 × 22/7 cm³
→ Volume of cone = 33462/7 cm³
→ <u>Volume of cone = 4780.28 cm³</u>
Answer:
2.83 m
Explanation:
The relationship between frequency and wavelength for an electromagnetic wave is given by

where
is the wavelength
is the speed of light
is the frequency
For the FM radio waves in this problem, we have:
is the minimum frequency, so the maximum wavelength is

The maximum frequency is instead

Therefore, the minimum wavelength is

So, the wavelength at the beginning of the range is 2.83 m.