1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kondaur [170]
3 years ago
14

3. Which of the following is an example of qualitative data?

Engineering
1 answer:
ad-work [718]3 years ago
5 0

Answer:

Number of Items

You might be interested in
When should u check ur review mirror
vaieri [72.5K]

Answer:

All the time and to see if someone is behind you.

Explanation:

After you check your side mirrors you should check your review mirror to see who is behind you.

6 0
3 years ago
Air at 293k and 1atm flow over a flat plate at 5m/s. The plate is 5m wide and 6m long. (a) Determine the boundary layer thicknes
loris [4]

Answer:

a). 8.67 x 10^{-3} m

b).0.3011 m

c).0.0719 m

d).0.2137 N

e).1.792 N

Explanation:

Given :

Temperature of air, T = 293 K

Air Velocity, U = 5 m/s

Length of the plate is L  = 6 m

Width of the plate is b = 5 m

Therefore Dynamic viscosity of air at temperature 293 K is, μ = 1.822 X 10^{-5} Pa-s

We know density of air is ρ = 1.21 kg /m^{3}

Now we can find the Reyonld no at x = 1 m from the leading edge

Re = \frac{\rho .U.x}{\mu }

Re = \frac{1.21 \times 5\times 1}{1.822\times 10^{-5} }

Re = 332052.6

Therefore the flow is laminar.

Hence boundary layer thickness is

δ = \frac{5.x}{\sqrt{Re}}

   = \frac{5\times 1}{\sqrt{332052.6}}

   = 8.67 x 10^{-3} m

a). Boundary layer thickness at x = 1 is δ = 8.67 X 10^{-3} m

b). Given Re = 100000

    Therefore the critical distance from the leading edge can be found by,

     Re = \frac{\rho .U.x}{\mu }

     100000 = \frac{1.21\times5\times x}{1.822 \times10^{-5}}

     x = 0.3011 m

c). Given x = 3 m from the leading edge

    The Reyonld no at x = 3 m from the leading edge

     Re = \frac{\rho .U.x}{\mu }

     Re = \frac{1.21 \times 5\times 3}{1.822\times 10^{-5} }

     Re = 996158.06

Therefore the flow is turbulent.

Therefore for a turbulent flow, boundary layer thickness is

    δ = \frac{0.38\times x}{Re^{\frac{1}{5}}}

       = \frac{0.38\times 3}{996158.06^{\frac{1}{5}}}

       = 0.0719 m

d). Distance from the leading edge upto which the flow will be laminar,

  Re = \frac{\rho \times U\times x}{\mu }

5 X 10^{5} = \frac{1.21 \times 5\times x}{1.822\times 10^{-5}}}

 x = 1.505 m

We know that the force acting on the plate is

F_{D} = \frac{1}{2}\times C_{D}\times \rho \times A\times U^{2}

and C_{D} at x= 1.505 for a laminar flow is = \frac{1.328}{\sqrt{Re}}

                                                                         = \frac{1.328}{\sqrt{5\times10 ^{5}}}

                                                                       = 1.878 x 10^{-3}

Therefore, F_{D} =  \frac{1}{2}\times C_{D}\times \rho \times A\times U^{2}

                                          = \frac{1}{2}\times 1.878\times 10^{-3}\times 1.21\times (5\times 1.505)\times 5^{2}

                                         = 0.2137 N

e). The flow is turbulent at the end of the plate.

  Re = \frac{\rho \times U\times x}{\mu }

       = \frac{1.21 \times 5\times 6}{1.822\times 10^{-5} }

       = 1992316

Therefore C_{D} = \frac{0.072}{Re^{\frac{1}{5}}}

                                           = \frac{0.072}{1992316^{\frac{1}{5}}}

                                           = 3.95 x 10^{-3}

Therefore F_{D} = \frac{1}{2}\times C_{D}\times \rho\times A\times U^{2}

                                           = \frac{1}{2}\times 3.95\times 10^{-3}\times 1.21\times (5\times 6)\times 5^{2}

                                          = 1.792 N

3 0
3 years ago
melinda is using a rectangular brass bar in a sculpture she is creating. the brass bar has a length that is 4 more than 3 times
lawyer [7]

Answer:

180 x 60 inches

Width = 60 inches

Length = 180 inches

Explanation:

Given

Let L = Length

W = Width

P = Perimeter

Length = 3 * Width

L = 3W

Perimeter of Brass = 480 inches

P = 480

Perimeter is given as 2(L + W);

So, 2 (L + W) = 480

L + W = 480/2

L + W = 240

Substitute 3W for L; so,

3W + W = 240

4W = 240

W = 240/4

W = 60 inches

L = 3W

L = 3 * 60

L = 180 inches

6 0
2 years ago
Read 2 more answers
Given a mass-spring-damper system. The impulse response of strength 1 can be obtained from a unit step response by: ______
Alina [70]

Answer:

Multiplying impulse response by t  ( option D )

Explanation:

We can obtain The impulse response of strength 1 considering a unit step response by Multiplying impulse response by t .

When we consider the Laplace Domain, and the relationship between unit step and impulse, we can deduce that the Impulse response will take the inverse Laplace transform of the function ( transfer ) . Hence Multiplying impulse response by t will be used .

5 0
2 years ago
Water is being added to a storage tank at the rate of 500 gal/min. Water also flows out of the bottom through a 2.0-in-inside di
melomori [17]

Answer:

From the answer, the water level is falling (since rate of outflow is more than that of inflow), and the rate at which the water level in the storage tank is falling is

(dh/dt) = - 0.000753

Units of m/s

Explanation:

Let the volume of the system at any time be V.

V = Ah

where A = Cross sectional Area of the storage tank, h = height of water level in the tank

Let the rate of flow of water into the tank be Fᵢ.

Take note that Fᵢ is given in the question as 500 gal/min = 0.0315 m³/s

Let the rate of flow of water out of the storage tank be simply F.

F is given in the form of (cross sectional area of outflow × velocity)

Cross sectional Area of outflow = πr²

r = 2 inches/2 = 1 inch = 0.0254 m

Cross sectional Area of outflow = πr² = π(0.0254)² = 0.00203 m²

velocity of outflow = 60 ft/s = 18.288 m/s

Rate of flow of water from the storage tank = 0.0203 × 18.288 = 0.0371 m³/s

We take an overall volumetric balance for the system

The rate of change of the system's volume = (Rate of flow of water into the storage tank) - (Rate of flow of water out of the storage tank)

(dV/dt) = Fᵢ - F

V = Ah (since A is constant)

dV/dt = (d/dt) (Ah) = A (dh/dt)

dV/dt = A (dh/dt) = Fᵢ - F

Divide through by A

dh/dt = (Fᵢ - F)/A

Fi = 0.0315 m³/s

F = 0.0371 m³/s

A = Cross sectional Area of the storage tank = πD²/4

D = 10 ft = 3.048 m

A = π(3.048)²/4 = 7.30 m²

(dh/dt) = (0.0315 - 0.0370)/7.3 = - 0.000753

(dh/dt) = - 0.000753

4 0
2 years ago
Other questions:
  • Memory Question!
    7·1 answer
  • A six-lane freeway (three lanes in each direction) currently operates at maximum LOS C conditions. The lanes are 11 ft wide, the
    5·1 answer
  • A coin placed 30.8 cm from the center of a rotating, horizontal turntable slips when its speed is 50.8 cm/s.
    12·1 answer
  • Its an opinion!!!!
    8·1 answer
  • python Write a program that takes a date as input and outputs the date's season. The input is a string to represent the month an
    7·1 answer
  • True or False? Duties of the company officials should be discussed
    11·1 answer
  • From the information generated in Prob. 6.4 (from your previous Aero HW#1), calculate the maximum rate of climb for the single-e
    13·1 answer
  • Give six reasons why farmers cultivate on small land​
    5·1 answer
  • A 240-ton tugboat is moving at 6 ft/s with a slack towing cable attached to a 100-ton barge that is at rest. The cable is being
    14·1 answer
  • 1) Plastics that soften when heated,harden when cooled, and then can be heated and softened many times
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!