1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kondaur [170]
3 years ago
14

3. Which of the following is an example of qualitative data?

Engineering
1 answer:
ad-work [718]3 years ago
5 0

Answer:

Number of Items

You might be interested in
A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa (15.5 × 106 psi) and an original diameter of 3.7
Keith_Richards [23]

Answer:

the maximum length of specimen before deformation is found to be 235.6 mm

Explanation:

First, we need to find the stress on the cylinder.

Stress = σ = P/A

where,

P = Load = 2000 N

A = Cross-sectional area = πd²/4 = π(0.0037 m)²/4

A = 1.0752 x 10^-5 m²

σ = 2000 N/1.0752 x 10^-5 m²

σ = 186 MPa

Now, we find the strain (∈):

Elastic Modulus = Stress / Strain

E = σ / ∈

∈ = σ / E

∈ = 186 x 10^6 Pa/107 x 10^9 Pa

∈ = 1.74 x 10^-3 mm/mm

Now, we find the original length.

∈ = Elongation/Original Length

Original Length = Elongation/∈

Original Length = 0.41 mm/1.74 x 10^-3

<u>Original Length = 235.6 mm</u>

5 0
3 years ago
Using the results of the Arrhenius analysis (Ea=93.1kJ/molEa=93.1kJ/mol and A=4.36×1011M⋅s−1A=4.36×1011M⋅s−1), predict the rate
uysha [10]

Answer:

k = 4.21 * 10⁻³(L/(mol.s))

Explanation:

We know that

k = Ae^{-E/RT} ------------------- euqation (1)

K= rate constant;

A = frequency factor = 4.36 10^11 M⁻¹s⁻¹;

E = activation energy = 93.1kJ/mol;

R= ideal gas constant = 8.314 J/mol.K;

T= temperature = 332 K;

Put values in equation 1.

k = 4.36*10¹¹(M⁻¹s⁻¹)e^{[(-93.1*10^3)(J/mol)]/[(8.314)(J/mol.K)(332K)}

k = 4.2154 * 10⁻³(M⁻¹s⁻¹)

here M =mol/L

k = 4.21 * 10⁻³((mol/L)⁻¹s⁻¹)

 or

k = 4.21 * 10⁻³((L/mol)s⁻¹)

or

k = 4.21 * 10⁻³(L/(mol.s))

3 0
3 years ago
A resistance of 30 ohms is placed in a circuit with a 90 volt battery. What current flows in the circuit?
blagie [28]

Answer:

3A

Explanation:

Using Ohms law U=I×R solve for I by I=U/R

4 0
2 years ago
For a flow rate of 212 cfs find the critical depth in (a) a rectangular channel with ????=6.5 ft, (b) a triangular channel with
Fofino [41]

Answer:

A. 3.21ft

B. 3.51ft

C. 2.95ft

D. 1.5275ft

Explanation:

A) Q =212 cu.f/s

Formula for critical depth of rectangular section is: dc =[(Q^2) /(b^2(g))]^1/3

Where dc =critical depth, ft

Q= quantity of flow or discharge, ft3/s

B= width of channel, ft (m)

g = acceleration due to gravity which is 9.81m/s2 or 32.185ft/s2

Now, from the question,

Q = 212 cu.f/s and b=6.5ft

Therefore, the critical depth is: [(212^2)/(6.5^2 x32. 185)]^(1/3)

To give ; critical depth= (44,944/1359.82)^(1/3) = 3.21ft

B. Formula for critical depth of a triangular section; dc = (2Q^2/gm^2)^(1/5)

From the question, Q =212 cu.f/s and m=1.6ft while g= 32.185ft/s2

Therefore, critical depth = [(212^2) /(1.6^2 x32. 185)] ^(1/5) = (44,944/84.466)^(1/5) = 3.51ft

C. For trapezoidal channel, critical depth(y) is derived from (Q^2 /g) = (A^3/T)

Where A= (B + my)y and T=(B+2my)

Now from the question, B=6.5ft and m=5ft.

Therefore, A= (6.5 + 2y)y and T=(6. 5 + 2(5y))= 6.5 + 10y

Now, let's plug the value of A and T into the initial equation to derive the critical depth ;

(212^2 /32.185) = [((6.5 + 2y)^3)y^3]/ (6.5 + 10y)

Which gives;

1396.43 = [((6.5 + 2y)^3)y^3]/ (6.5 + 10y)

Multiply both sides by 6.5 + 10y to get;

1396.43(6.5 + 10y) = [((6.5 + 2y)^3)y^3]

Factorizing this, we get y = 2. 95ft

D) Formula for critical depth of a circular section; dc =D/2[1 - cos(Ѳ/2)]

Where D is diameter of pipe and Ѳ is angle at critical depth in radians.

Angle not given, so we assume it's perpendicular angle is 90.

Since angle is in radians, therefore Ѳ/2 = 90/2 = 45 radians ; converting to degree, = 2578. 31

Therefore, dc = (6.5/2) (1 - cos (2578.31))

dc = 3.25(1 - 0.53) = 3.25 x 0.47 = 1.5275ft

8 0
3 years ago
Calculate the osmotic pressure of seawater containing 3.5 wt % NaCl at 25 °C . If reverse osmosis is applied to treat seawater,
AlladinOne [14]

Answer:

Highest osmotic pressure that membrane may experience is

' =58.638 atm

Explanation:

Suppose sea-water taken is M= 1 kg

Density of water = 1000 kg/m3

Therefore Volume of water= Mass,M/Density of water

V= 1 kg/(1000 kg/m3)

V= 10-3 m3= 1 Litre

Since mass of Nacl is 3.5 wt%,Therefore in 1 kg of water

Mass present of NaCl= m= 0.035*1000 g

m= 35 g

Since molecular weight of NaCl= 58.44 g/mol =M.W.

Thus its Number of moles of Nacl= m/M.W

nNaCl= 35g/58.44 gmol-1

= 0.5989 mol

ans since volume of solution is 1 L thus concentration of NaCl is ,C= number of moles/Volume of solution in Litres

C= 0.5989mol/ 1L

=0.5989 M

Since 1 mol NaCL disssociates to form 2 moles of ions of Na+ andCl- Thus van't hoff factor i=2

And osmotic pressure  = iCRT ------------------------------(1)( Where R= 0.0821 L.atm/mol.K and T= 25oC= 298.15 K)

Putting in equation 1 ,we get  = 2*(0.5989 mol/L)*(0.0821 L.atm/mol.K)*298.15 K

=29.319 atm

Now as the water gets filtered out of the membrane,the water's volume decreases and concentration C of NacL increases, thus osmotic pressure also increases.Thus, at 50% water been already filtered out, the osmotic pressure at the membrane will be maximum

Thus Volume of water left after 50% is filtered out as fresh water= 0.5 L (assuming no salt passes through semi permeable membrane)

Thus New concentration of NaCl C'= 2*C

C'=2*0.5989 M

=1.1978 M

and Since Osmotic pressure is directly proportional to concentration, Thus As concentration C doubles to C', Osmotic Pressure  ' also doubles from  ,

Thus,Highest osmotic pressure that membrane may experience is,  '=2*  

=2*29.319 atm

' =58.638 atm

3 0
3 years ago
Other questions:
  • How does a car batteray NOT die?
    13·1 answer
  • What are the challenges posed by strategic information systems, and how should they be addressed?
    10·1 answer
  • Memory Question!
    7·1 answer
  • Explain the differences between planned and predictive maintenance.
    12·1 answer
  • Line layout is also called ......​
    5·1 answer
  • A 150-lbm astronaut took his bathroom scale (a spring scale) and a beam scale (compares masses) to the moon where the local grav
    13·1 answer
  • Which of the following statements about glycogen metabolism is FALSE?
    12·1 answer
  • Basic output with variables (Java) This zyLab activity is intended for students to prepare for a larger programming assignment.
    7·1 answer
  • When you arrive at an intersection with a stop sign in your direction, if there is no marked stop
    14·2 answers
  • If a condenser has high head pressure and a higher than normal temperature, a technician could ____.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!