Answer:
Gravitational; strongest; facing; closer; near side; toward.
Explanation:
The gravitational attraction between the Earth and the moon is strongest on the side of the Earth that happens to be facing the moon, simply because it is closer. This attraction causes the water on this “near side” of Earth to be pulled toward the moon. These forces of attraction and inertia tends to keep the water in place and consequently, leads to a bulge of water on the near side with respect to the moon.
Also, you should note that what is responsible for the moon being in orbit around the Earth is the gravitational force of attraction between the two planetary bodies (Earth and Moon).
Answer:
Qcd=0.01507rad
QT= 0.10509rad
Explanation:
The full details of the procedure and answer is attached.
Answer:
T=151 K, U=-1.848*10^6J
Explanation:
The given process occurs when the pressure is constant. Given gas follows the Ideal Gas Law:
pV=nRT
For the given scenario, we operate with the amount of the gas- n- calculated in moles. To find n, we use molar mass: M=102 g/mol.
Using the given mass m, molar mass M, we can get the following equation:
pV=mRT/M
To calculate change in the internal energy, we need to know initial and final temperatures. We can calculate both temperatures as:
T=pVM/(Rm); so initial T=302.61K and final T=151.289K
Now we can calculate change of U:
U=3/2 mRT/M using T- difference in temperatures
U=-1.848*10^6 J
Note, that the energy was taken away from the system.
A clean machine is a clean machine :-)
Answer:
W=2 MW
Explanation:
Given that
COP= 2.5
Heat extracted from 85°C
Qa= 5 MW
Lets heat supplied at 150°C = Qr
The power input to heat pump = W
From first law of thermodynamics
Qr= Qa+ W
We know that COP of heat pump given as



W=2 MW
For Carnot heat pump


2.5 T₂ - 895= T₂
T₂=596.66 K
T₂=323.6 °C