Answer:
Explanation:
In order to measure the coefficient of friction , we apply external force to move the body . When external force comes in motion , we adjust the external force so that it moves with zero acceleration or uniform velocity . In this case external force becomes equal to kinetic frictional force and then net force becomes zero because
net force = mass x acceleration = m x 0 = 0
Now frictional force = μ mg where μ is coefficient of kinetic friction
so F = μ mg where F is external force applied
μ = F / mg
Hence , to make external force equal to frictional force , it is necessary to make acceleration of body zero .
Nitrogen
Explanation:
Adding one proton to a carbon atom makes Nitrogen.
A quick introspection on atoms:
- An atom is made up of three fundamental particles.
- They are protons, neutrons and electrons.
- The protons are positively charged and the neutrons do not carry any charges.
- Electrons are negatively charged.
The difference between an atom and another is the number of protons in them. This is the atomic number.
The periodic table of element is a list of elements arranged based on the number of protons they have. Every element on the table has unique number of protons which makes it differ from another.
- Atoms do not readily lose their protons because they are held by nuclear forces in the nucleus of an atom.
When an element gains a proton, it becomes another element.
Carbon has proton number of 6
If a proton is added to it, it becomes 7
This is the proton or atomic number of nitrogen.
Learn more:
Atomic number brainly.com/question/5425825
#learnwithBrainly
Let's check the relationship


So
- Raindrops will fall faster . .
- Also walking on ground would become more difficult as g increases.
Option C is wrong by now .Let's check D once

- So time period of simple pendulum would decrease.
If its asking the distance for the 65 db then use a proportion, if otherwise pleas clarify. It sounds like a pretty juicy conversation.
Answer:
121.3 cm^3
Explanation:
P1 = Po + 70 m water pressure (at a depth)
P2 = Po (at the surface)
T1 = 4°C = 273 + 4 = 277 K
V1 = 14 cm^3
T2 = 23 °C = 273 + 23 = 300 K
Let the volume of bubble at the surface of the lake is V2.
Density of water, d = 1000 kg/m^3
Po = atmospheric pressure = 10^5 N/m^2
P1 = 10^5 + 70 x 1000 x 10 = 8 x 10^5 N/m^2
Use the ideal gas equation

By substituting the values, we get

V2 = 121.3 cm^3
Thus, the volume of bubble at the surface of lake is 121.3 cm^3.