The period of the wave is determined as 0.083 seconds.
<h3>What is period of a wave?</h3>
The period of a wave is the time taken by a particle of the medium to complete one vibration.
<h3>Period of the wave</h3>
The period of the wave is calculated as follows;
T = 1/f
where;
- T is the period of the wave
- f is frequency of the wave
T = 1/12
T = 0.083 seconds
Thus, the period of the wave is determined as 0.083 seconds.
Learn more about period of a wave here: brainly.com/question/18818486
#SPJ4
Answer:
<h2>33.53m/s</h2>
Explanation:
Given the maximum speed limit on interstate 10 as 75 miles per hour, to get the speed in meter per seconds, we need to convert the given speed to meter per seconds.
Using the conversion 1 mile = 1609.34m and 1 hour = 3600 seconds
75 miles perhour = 75miles/1 hour
75miles/1 hour (in m/s) = 75miles*1609.34m* 1 hour/1mile * 1 hour * 3600s *
= 75 *1609.34m* 1 /1 * 1 * 3600s
= 120,700.5m/3600s
= 33.53m/s
<em>Hence the maximum speed limit on interstate 10 in metre per seconds is 33.53m/s</em>
Answer:
I don't exactly know what you learned but it could be because of more friction or the bus was running out of gas.
Given :
Mass of water, m = 2 grams.
The temperature of water drops from 31 °C to 29 °C .
The specific heat of water is 4.184 J/(g • °C).
To Find :
Amount of heat lost in this process.
Solution :
We know, heat lost is given by :

Therefore, amount of heat lost in this process is 16.736 J.