The reaction between phosphoric acid and ammonia that produces ammonium phosphate can be written as follows:
3NH3 + H3PO4 ..................> (NH4)3PO4
From the periodic table:
molar mass of nitrogen = 14 grams
molar mass of hydrogen = 1 grams
molar mass of oxygen = 16 grams
molar mass of phosphorus = 30.9 grams
based on this:
molar mass of 3NH3 = 3 (14 + 3(1)) = 51 grams
molar mass of H3PO4 = 3(1) + 30.9 + 4(16) = 97.9 grams
molar mass of (NH4)3PO4 = 3 (14 + 4(1)) + 30.9 + 4(16) = 54 + 30.9 + 64
= 148.9 grams
Therefore, 97.9 grams of phosphoric acid is required to produced 148.9 grams of ammonium phosphate.
Thus, to know the mass of ammonium phosphate produced from 4.9 grams of phosphoric acid, we will simply use cross multiplication as follows:
amount of produced ammonium phosphate = (4.9 x 148.9) / 97.9 = 7.45 g
when sodium metal is dropped in water, hydrogen gas in liberated due to extreme heat released as the reaction is exothermic, gas catches fire.
Answer: There are 4.375 moles in 2.5 L of 1.75 M 
Explanation:
To calculate the number of moles for given molarity, we use the equation:
Molarity of solution = 1.75 M
Volume of solution = 2.5 L
Putting values in equation , we get:

Answer:
reactive nonmetals since they have a full valence shell (that's why they're stable).