Answer:
La velocidad del haz de electrones es 1.78x10⁵ m/s. Este valor se obtuvo asumiendo que el campo magnético dado (3500007) estaba en tesla y que la fuerza venía dada en nN.
Explanation:
Podemos encontrar la velocidad del haz de electrones usando la Ley de Lorentz:
(1)
En donde:
F: es la fuerza magnética = 100 nN
q: es el módulo de la carga del electron = 1.6x10⁻¹⁹ C
v: es la velocidad del haz de electrones =?
B: es el campo magnético = 3500007 T
θ: es el ángulo entre el vector velocidad y el campo magnético = 90°
Introduciendo los valores en la ecuación (1) y resolviendo para "v" tenemos:
Este valor se calculó asumiendo que el campo magnético está dado en tesla (no tiene unidades en el enunciado). De igual manera se asumió que la fuerza indicada viene dada en nN.
Entonces, la velocidad del haz de electrones es 1.78x10⁵ m/s.
Espero que te sea de utilidad!
In Newton's third law, the action and reaction forces D.)act on different objects
Explanation:
Newton's third law of motion states that:
<em>"When an object A exerts a force on object B (action force), then action B exerts an equal and opposite force (reaction force) on object A"</em>
It is important to note from the statement above that the action force and the reaction force always act on different objects. Let's take an example: a man pushing a box. We have:
- Action force: the force applied by the man on the box, forward
- Reaction force: the force applied by the box on the man, backward
As we can see from this example, the action force is applied on the box, while the reaction force is applied on the man: this means that the two forces do not act on the same object. This implies that whenever we draw the free-body diagram of the forces acting on an object, the action and reaction forces never appear in the same diagram, since they act on different objects.
Learn more about Newton's third law of motion:
brainly.com/question/11411375
#LearnwithBrainly
The gravitational acceleration of a planet is proportional to the planet's mass, and inversely proportional to square of the planet's radius.
So when you stand on the surface of this particular planet, you feel a force of gravity that is
(1/2) / (3²)
of the force that you feel on the surface of the Earth.
That's <em>(1/18)</em> as much as on Earth.
The acceleration of gravity there would be about <em>0.545 m/s²</em>.
This is about 12% less than the gravity on Pluto.