Coulomb's Law
Given:
F = 3.0 x 10^-3 Newton
d = 6.0 x 10^2 meters
Q1 = 3.3x 10^-8 Coulombs
k = 9.0 x 10^9 Newton*m^2/Coulombs^2
Required:
Q2 =?
Formula:
F = k • Q1 • Q2 / d²
Solution:
So, to solve for Q2
Q2 = F • d²/ k • Q1
Q2 = (3.0 x 10^-3 Newton) • (6.0 x 10^2 m)² / (9.0 x 10^9
Newton*m²/Coulombs²) • (3.3x 10^-8 Coulombs)
Q2 = (3.0 x 10^-3 Newton) • (360 000 m²) / (297 Newton*m²/Coulombs)
Q2 = 1080 Newton*m²/ (297 Newton*m²/Coulombs)
Then, take the reciprocal of the denominator and start
multiplying
Q2 = 1080 • 1 Coulombs/297
Q2 = 1080 Coulombs / 297
Q2 = 3.63636363636 Coulombs
Q2 = 3.64 Coulumbs
The frequency increasing makes the crests pass more quickly. Frequency is a count of how many times per second an event occurs. In waves, this event is the passing of an entire cycle. Once the cycle has passed, the wave repeats. The faster the wave repeats, the higher the frequency. For this reason, frequency has units of hertz, Hz. The unit of hertz is 1/s or "per second"
Answer:
s = 589.3 m
Explanation:
Let the truck and car meet at a distance = s m
The truck is moving at constant velocity = v
so s= v * t ---------- (1)
car:
Vi = 0 m/s
a = 3.9 m/s²
s = Vi* t + 1/2 a t²
s= 0 * t + 1/2 a t²
s = 1/2 a t² ----------- (2)
compare equation (1) and equation (2)
s= v * t = 1/2 a t²
⇒ v * t = 1/2 a t²
⇒ t = 2 * v/ a
⇒ t = (2 * 33.9 )/ 3.9
⇒ t = 17. 38 s
Now
from equation (1)
s= v * t
s= 33.9 * 17.38
⇒ s = 589.3 m