Answer:
I got the answers but it won't let me post it correctly on here....
Explanation:
9.) 10-2.76 =0.0174 [H30+]= 1.74*10-3 M
10.)10-3.65=0.00224 [H3O+] =2.24*10-2 M
11.)10-3.65=0.00224 [OH-]= 2.224*10-4M
12.)10-6.87=0.00000135 [OH-]= 1.35*10-7M
First, we calculate the mass of the sample:
mass = density x volume
mass = 8.48 x 112.5
mass = 954 grams
Now, we will calculate the mass of each component using its percentage mass, then divide it by its atomic mass to find the moles and finally multiply the number of moles by the number of particles in a mole, that is, 6.02 x 10²³.
Zinc mass = 0.37 x 954
Zinc mass = 352.98 g
Zinc moles = 352.98 / 65
Zinc moles = 5.43
Zinc atoms = 5.43 x 6.02 x 10²³
Zinc atoms = 3.27 x 10²⁴
Copper mass = 0.63 x 954
Copper mass = 601.02 g
Copper moles = 601.02 / 64
Copper moles = 9.39
Copper atoms = 9.39 x 6.02 x 10²³
Copper atoms = 5.56 x 10²⁴
3.47 x
atoms of gold have mass of 113.44 grams.
Explanation:
Data given:
number of atoms of gold = 3.47 x
mass of the gold in given number of atoms = ?
atomic mass of gold =196.96 grams/mole
Avagadro's number = 6.022 X 
from the relation,
1 mole of element contains 6.022 x
atoms.
so no of moles of gold given = 
0.57 moles of gold.
from the relation:
number of moles = 
rearranging the equation,
mass = number of moles x atomic mass
mass = 0.57 x 196.96
mass = 113.44 grams
thus, 3.47 x
atoms of gold have mass of 113.44 grams
Answer is: <span>the molarity of this glucose solution is 0.278 M.
m</span>(C₆H₁₂O₆<span>) = 5.10 g.
n</span>(C₆H₁₂O₆) = m(C₆H₁₂O₆) ÷ M(C₆H₁₂O₆<span>) .
</span>n(C₆H₁₂O₆) = 5.10 g ÷ 180.156 g/mol.
n(C₆H₁₂O₆<span>) = 0.028 mol.
</span>V(solution) = 100.5 mL ÷ 1000 mL/L.
V(solution) = 0.1005 L.
c(C₆H₁₂O₆) = n(C₆H₁₂O₆) ÷ V(solution).
c(C₆H₁₂O₆) = 0.028 mol ÷ 0.1005 L.
c(C₆H₁₂O₆<span>) = 0.278 mol/L.</span>
Hirlkrrkkrkrmmrrmmejekkeowoow