Answer:
13500 N
Explanation:
According to newtons second law of motion
mass m =1500 Kg
a = 9m/s^2
Force F = mass m × acceleration a
F = 1500×9= 13500 N
Answer:
[See Below]
Explanation:
I'd say 44 something. It's probably ml but I can't see what it says on the tube.
18. a) The materials that are in contact. The two materials and the nature of their surfaces. ...
b) The force pushing the two surfaces together. Pushing the surfaces together causes the more of the asperities to come together and increases the surface area in contact with each other.
19. the quantity of motion of a moving body, measured as a product of its mass and velocity.
20. According to Newton's third law of motion, action force is equal to reaction but acts on two different bodies and in opposite directions. When a horse pushes the ground, the ground reacts and exerts a force on the horse in the forward direction. This force is able to overcome friction force of the cart and it moves.
21. The mass of an object is a measure of the object's inertial property, or the amount of matter it contains. The weight of an object is a measure of the force exerted on the object by gravity, or the force needed to support it. The pull of gravity on the earth gives an object a downward acceleration of about 9.8 m/s2.
22. R12. Mass is more fundamental because it is an intrinsic property of an object. Weight varies with location depending upon the acceleration due to gravity eg. for a mass m = 10kg on Earth it`s weight is W = mg = 10 x 10 = 100N.
When you heated the can with the bit of water inside and you boiled it over a flame, the water turned to vapor (gas) and the pressure in the inside of the can is different from the pressure on the outside of the can. When you placed the can into a ice water beaker or a container, the can shrunk it's size, decreasing it's mass and density. The can shrunk as a result of the inside pressure being equalized with the outside pressure.
The part where you placed it in the ice bath or container was when the water vapor was forced out of the can.