Answer:
The force will be zero
Explanation:
Due to the symmetric location of the +2μC charges the forces the excert over the +5μC charge will cancel each other resulting in a net force with a magnitude of zero.However in this case it would be an unstable equilibrium, very vulnerable to a kind of bucking. If the central charge is not perfectly centered on the vertical axis the forces will have components in that axis that will add together instead of canceling each other.
Answer:
the magnitude of the torque on the permanent magnet = 7.34×10⁻³ Nm
the potential energy (in J) of the system consisting of the permanent magnet and the magnetic field provided by the coils = -1.0485 ×10⁻² J
Explanation:
The torque is given by :

where ;
m = 0.160 A.m²
B = 0.0800 T
θ = 35°
So the magnitude of the torque N = mBsinθ
N = (0.160)(0.0800)(sin 35°)
N = 0.007341
N = 7.34×10⁻³ Nm
Hence, the magnitude of the torque on the permanent magnet = 7.34×10⁻³ Nm
b) The potential energy 
U = -mBcosθ
U = (- 0.160)(0.0800)(cos 45)
U = -0.010485
U = -1.0485 ×10⁻² J
Thus, the potential energy (in J) of the system consisting of the permanent magnet and the magnetic field provided by the coils = -1.0485 ×10⁻² J
Answer:
Explanation:
charge, q = 10 C
time, t = 2 micro second
Current, i = q / t
i = 10 / (2 x 10^-6) = 5 x 10^6 A
(a)
distance, d = 1 m
the formula for the magnetic field is given by


B = 1 Tesla
Now the distance is d' = 1 km = 1000 m


B' = 0.001 Tesla
(b) The magnetic field of earth is Bo = 3 x 10^-5 tesla
B / Bo = 3.3 x 10^4
B'/Bo = 33.3