Answer:
c. both have same energy
Explanation:
The complete question is
suppose you have two cans, one with milk, and the other with refried beans. The cans have essentially the same size, shape, and mass. If you release both cans at the same time, on a downhill ramp, which can has more energy at the bottom of the ramp? ignore friction and air resistance..
a. can with beans
b. can with milk
c. both have same energy
please explain your answer
Since both cans have the same size, shape, and mass, and they are released at the same height above the ramp, they'll possess the same amount of mechanical energy. This is because their mechanical energy, which is the combination of their potential and kinetic energy are both dependent on their mass. Also, having the same physical quantities like their size and shape means that they will experience the same environmental or physical factors, which will be balanced for both.
Answer:
B. ) 0.34 m
I definitely guessed and got the right answer so :))
Answer:
<em>Part A</em><em>:</em>
a) If the wavelength of the light is decreased the fringe spacing Δy will decrease.
<em>Part B</em><em>:</em>
b) If the spacing between the slits is decreased the fringe spacing Δy will increase.
<em>Part C</em><em>:</em>
a) If the distance to the screen is decreased the fringe spacing will decrease.
<em>Part D</em><em>:</em>
The dot in the center of fringe E is
farther from the left slit than from the right slit.
Explanation:
In the double-slit experiment there is a clear contrast between the dark and bright fringes, that indicate destructive and constructive interference respectively, in the central peak and then is less so at either side.
The position of bright fringes in the screen where the pattern is formed can be calculated with


- m is the order number.
is the wavelength of the monochromatic light.- L is the distance between the screen and the two slits.
- d is the distance between the slits.
- Part A: a) In the above equation for the position of bright fringes we can see that if the wavelength of the light
is decreased the overall effect will be that the fringes are going to be closer. That means that the fringe spacing Δy will decrease.
- Part B: b) In the above equation for the position of bright fringes we can see that if the spacing between the slits d is decreased the fringes are going to be wider apart. That means the fringe spacing Δy will increase.
- Part C: a) In the above equation we can see that if the distance to the screen L is decreased the fringes are going to be closer. That means the fringe spacing Δy will decrease.
- Part D: We are told that the central maximum is the fringe C that corresponds with m=0. That means that fringe E corresponds with the order number m=2 if we consider it to be the second maximum at the rigth of the central one. To calculate how much farther from the left slit than from the right slit is a dot located at the center of the fringe E in the screen we use the condition for constructive interference. That says that the path length difference Δr between rays coming from the left and right slit must be
We simply replace the values in that equation :


The dot in the center of fringe E is
farther from the left slit than from the right slit.
First one, holding a basketball in the air. Potential energy is the energy it has mostly from gravity. The further you go from the center of mass, the more energy.
Answer:
Part a)

Part b)

Explanation:
Part a)
Since the diver is moving under gravity
so here its acceleration due to gravity will be uniform throughout the motion
so here we will have

here we have




Part b)
at highest point of his motion the final speed will be zero
so we will have


