The trickiest part of this problem was making sure where the Yakima Valley is.
OK so it's generally around the city of the same name in Washington State.
Just for a place to work with, I picked the Yakima Valley Junior College, at the
corner of W Nob Hill Blvd and S16th Ave in Yakima. The latitude in the middle
of that intersection is 46.585° North. <u>That's</u> the number we need.
Here's how I would do it:
-- The altitude of the due-south point on the celestial equator is always
(90° - latitude), no matter what the date or time of day.
-- The highest above the celestial equator that the ecliptic ever gets
is about 23.5°.
-- The mean inclination of the moon's orbit to the ecliptic is 5.14°, so
that's the highest above the ecliptic that the moon can ever appear
in the sky.
This sets the limit of the highest in the sky that the moon can ever appear.
90° - 46.585° + 23.5° + 5.14° = 72.1° above the horizon .
That doesn't happen regularly. It would depend on everything coming
together at the same time ... the moon happens to be at the point in its
orbit that's 5.14° above ==> (the point on the ecliptic that's 23.5° above
the celestial equator).
Depending on the time of year, that can be any time of the day or night.
The most striking combination is at midnight, within a day or two of the
Winter solstice, when the moon happens to be full.
In general, the Full Moon closest to the Winter solstice is going to be
the moon highest in the sky. Then it's going to be somewhere near
67° above the horizon at midnight.
Y - yo = Vo*t - g * (t^2) / 2
Vo = - 9.0 m/s
t = 0.50 s
=> y - yo = -9.0 m/s * 0.5 s - 9.8 m/s^2 * (0.5s)^2 / 2 = - 4.5m - 1.225m = - 5.725 m.
Answer: option c) - 5.7
T<span>he equation to be used here to determine the distance between two equipotential points is:
V = k * Q / r
where v is the voltage of the point, k is a constant, Q is charge of the point measured in coloumbs and r is the distance.
In this case, we can use ratio of proportions to determine the distance between the two points. in this respect,
Point 1:
V = k * Q / r = 290
r = k*Q/290 ; kQ = 290r
Point 2:
V = k * Q / R = 41
R = k*Q/41
from equation 10 kQ = 290r
R = 290/(41)= 7.07 m
The distance between the two points then is equal to 7.07 m.
</span>
Answer: Cells have receptors because Receptors let the cell know when to let things in and out of the cell.
Explanation:
Cell receptors also called transmembrane receptors are proteins located on the surface of a cell (extracellularly) or inside the cell which receive signals that alters the functions of the cell. The functions of the cells which can be altered includes the alteration in gene transcription and the cell morphology.
Cell receptors are generally categorizes into the following groups:
--> Internal receptors
--> cell surface receptors
--> ion channel receptors
--> G protein coupled receptors
--> enzyme linked receptors
Interaction of cell membrane receptors with specific ligands that bonds to the receptors causes conformational changes in the receptor protein. This in turn, enzymatically activates the intracellular part of the protein or induces interactions between the receptor and the proteins in the cytoplasm that act as second messengers, thereby relaying the signal from the extracellular part of the receptor to the interior of the cell. This enables the cell to know when to let things in or out of it through the information conveyed.