The range of potential energies of the wire-field system for different orientations of the circle are -
θ U
0° 375 π x 
90° 0
180° - 375 π x 
We have current carrying wire in a form of a circle placed in a uniform magnetic field.
We have to the range of potential energies of the wire-field system for different orientations of the circle.
<h3>What is the formula to calculate the Magnetic Potential Energy?</h3>
The formula to calculate the magnetic potential energy is -
U = M.B = MB cos 
where -
M is the Dipole Moment.
B is the Magnetic Field Intensity.
According to the question, we have -
U = M.B = MB cos 
We can write M = IA (I is current and A is cross sectional Area)
U = IAB cos 
U = Iπ
B cos 
For
= 0° →
U(Max) = MB cos(0) = MB = Iπ
B = 5 × π ×
× 3 ×
=
375 π x
.
For
= 90° →
U = MB cos (90) = 0
For
= 180° →
U(Min) = MB cos(0) = - MB = - Iπ
B = - 5 × π ×
× 3 ×
=
- 375 π x
.
Hence, the range of potential energies of the wire-field system for different orientations of the circle are -
θ U
0° 375 π x 
90° 0
180° - 375 π x 
To solve more questions on Magnetic potential energy, visit the link below-
brainly.com/question/13708277
#SPJ4
Answer:
0.84
Explanation:
m = Massa balok
g = Percepatan gravitasi
= Sudut kemiringan
= Koefisien gesekan statik antara balok dan bidang miring
Gaya balok karena beratnya diberikan oleh

Gaya gesekan diberikan oleh

Kondisi dimana balok mulai bergerak adalah ketika gaya balok akibat beratnya sama dengan gaya gesek pada balok.

Koefisien gesekan statik antara balok dan bidang miring adalah 0.84.
As we sit in a chair, Action force will be only in one direction and that direction would be downward only.
In short, Your Answer would be Option A
Hope this helps!
<h2>
Answer: 540 J</h2>
Explanation:
The Work
done by a Force
refers to the release of potential energy from a body that is moved by the application of that force to overcome a resistance along a path.
Now, when the applied force is constant and the direction of the force and the direction of the movement are parallel, the equation to calculate it is:
(1)
In this case both (the force and the distance in the path) are parallel (this means they are in the same direction), so the work
performed is the product of the force exerted to push the box
by the distance traveled
.
Hence:
(2)