Answer:
a. Zombie
Explanation:
Zombies- A cracker — a computer hacker who intends mischief or harm — secretly infiltrates an unsuspecting victim’s computer and uses it to conduct illegal activities. The user generally remains unaware that his computer has been taken over — he can still use it, though it might slow down considerably. As his computer begins to either send out massive amounts of spam or attack Web pages, he becomes the focal point for any investigations involving his computer’s suspicious activities. In one case of zombies it was found that over 1.5 million computers were affected in an attack.
Answer:
Columbia broadcasting system was never been a part of RCA corporation. The other companies Westinghouse, united fruit company and general electric were remain as part of RCA.
Explanation:
Answer:
Explanation:
Call the bike on the right A
Call the bike on the left B
The car begins it's time when it passes A
4 minutes later, it passes B.
But B has moved in 4 minutes and that is the key to the problem.
How far has B moved.
t = 4 minutes = 4/60 hours = 1/15 of an hour.
d = ?
rate = 30 km / hr
d = r * t
d = 30 km/hr * 1/15 hours = 2 km
The distance between the bikes is 5 km.
So the car has traveled 5 - 2 = 3 km
d = 3 km
r = ?
t = 4 minutes = 1/15 hour
r = d/t = 3/(1/15)= 3 / 0.066666666 = 45 km/hr.
Answer:
a) attractiva, b) dF =
, c) F =
, d) F = -1.09 N
Explanation:
a) q1 is negative and the charge of the bar is positive therefore the force is attractive
b) For this exercise we use Coulomb's law, where we assume a card dQ₂ at a distance x
dF =
where k is a constant, Q₁ the charge at the origin, x the distance
c) To find the total force we must integrate from the beginning of the bar at x = d to the end point of the bar x = d + L
∫ dF =
as they indicate that the load on the bar is uniformly distributed, we use the concept of linear density
λ = dQ₂ / dx
DQ₂ = λ dx
we substitute
F = 
F = k Q1 λ (
)
we evaluate the integral
F = k Q₁ λ
F = k Q₁ λ 
we change the linear density by its value
λ = Q2 / L
F =
d) we calculate the magnitude of F
F =9 10⁹ (-4.2 10⁻⁶)
F = -1.09 N
the sign indicates that the force is attractive