Answer:
Part a)

Part b)
t = 12 s
Explanation:
Part a)
Tension in the rope at a distance x from the lower end is given as

so the speed of the wave at that position is given as

here we know that

now we have


Part b)
time taken by the wave to reach the top is given as




Answer:
the answer is b
Explanation:
Second and third class levers are differentiated by <u>the location of the </u><u>load.</u>
<em>Hope</em><em> </em><em>this</em><em> </em><em>help</em><em> </em><em>you</em><em> </em><em>out </em><em>and have</em><em> </em><em>a </em><em>nice</em><em> </em><em>day </em><em>=</em><em>)</em>
the answer is a) 0.00235 because 1/425=0.00235. hope I helped!
Answer:
a) 1.3 rad/s
b) 0.722 s
Explanation:
Given
Initial velocity, ω = 0 rad/s
Angular acceleration of the wheel, α = 1.8 rad/s²
using equations of angular motion, we have
θ2 - θ1 = ω(0)[t2 - t1] + 1/2α(t2 - t1)²
where
θ2 - θ1 = 53.2 rad
t2 - t1 = 7s
substituting these in the equation, we have
θ2 - θ1 = ω(0)[t2 - t1] + 1/2α(t2 - t1)²
53.2 =ω(0) * 7 + 1/2 * 1.8 * 7²
53.2 = 7.ω(0) + 1/2 * 1.8 * 49
53.2 = 7.ω(0) + 44.1
7.ω(0) = 53.2 - 44.1
ω(0) = 9.1 / 7
ω(0) = 1.3 rad/s
Using another of the equations of angular motion, we have
ω(0) = ω(i) + α*t1
1.3 = 0 + 1.8 * t1
1.3 = 1.8 * t1
t1 = 1.3/1.8
t1 = 0.722 s
Alpacas were used for their meat, fibers for clothing, and art, and their images in the form of conopas.