Answer:
1. bending of light in gravitational fields.
2. effect of gravitational redshift.
3. perihelion precission of mecury.
Explanation:
1 bending of light in gravitational fields, we can think of it like this:
by noting the change in position s of stars as they pass near the sun on the celetial sphere, so since the sun creates a gravitational field even the star thats not in our line of side(behind the sun) can be seen because its light is bent.
2. effects of gravitational redshift:
this says that if you are in the gravitational field, your clock moves slower when it is seen by a distant observer.
3. perihelion precission of mecury:
according to Newtonian physics a two body system consisting of a lone orbiting the spherical mass would trace out an ellipse with the center of mass of the system as the focus but mercury deviates from that precission. then according to Einstein, the change in orientation of the orbital ellipsewithin its orbital plane is the effect of gravitation being mediated by the curvature of space-time.
I believe the correct answer from the choices listed above is the last option. If the volatility of X is higher than that of Y, then <span>Y’s molecules experience stronger London dispersion forces than X’s molecules. All molecules has london dispersion forces. Also, the stronger the bond, the harder it is to volatilize. Hope this answers the question.</span>
Answer: it becomes a positive ion
Explanation:
So, when an atom loses 2 electrons there will be no change in the number of neutrons. Therefore, an isotope will not form. Thus, it is concluded that when an atom with no charge loses two electrons, it becomes a positive ion.
Answer:
The value of acceleration that accomplishes this is 8.61 ft/s² .
Explanation:
Given;
maximum distance to be traveled by the car when the brake is applied, d = 450 ft
initial velocity of the car, u = 60 mph = (1.467 x 60) = 88.02 ft/s
final velocity of the car when it stops, v = 0
Apply the following kinematic equation to solve for the deceleration of the car.
v² = u² + 2as
0 = 88.02² + (2 x 450)a
-900a = 7747.5204
a = -7747.5204 / 900
a = -8.61 ft/s²
|a| = 8.61 ft/s²
Therefore, the value of acceleration that accomplishes this is 8.61 ft/s² .
About a mil sience 2014-2015