Answer:
Astronomers have no theoretical explanation for the ""hot Jupiters"" observed orbiting some other stars.
False
Explanation:
The “hot Jupiters” joint word startes to be used to be able to describe planets like 51 Pegasi b, a planet with a 10-day-or-less orbit and a mass 25% or greater than Jupitere, circling a sun-like star planet in 1995, which was found by astronomers Michel Mayor and Didier Queloz, who were awarded the 2019 Nobel Prize for Physics along with the cosmologist James Peebles for their “contributions to our understanding of the evolution of the universe and Earth’s place in the cosmos.”
Now we know a total of 4,000-plus exoplanets, but only a few more than 400 meet the definition of the enigmatic hot Jupiters which, tell us a lot about how planetary systems form, and what kinds of conditions cause extreme results.
In a 2018 paper in the Annual Review of Astronomy and Astrophysics, astronomers Rebekah Dawson of the Pennsylvania State University and John Asher Johnson of Harvard University reviewed on how hot Jupiters might have formed, and would be the meaning for the rest of the planets in the galaxy.
Answer:




Explanation:
The electrical reactance is defined as:

Where:

So, replacing the data provided by the problem:

Now, the impedance can be calculated as:

Where:

Replacing the data:

In order to find the magnitude of the impedance we can use the next equation:

We can use Ohm's law to find the current:

Therefore the current is:

And its magnitude is:

Finally the phase angle of the current is given by:

Explanation:
work done by friction = 1/2 x 42 x ( 3.33^2 - 11.5^2)
= 21 ( 11.08 - 132.25)
= 21 ( - 121.17 )
= - 2544.57 J
Answer:
Explanation:
Given that, .
Pressure around scuba is
P = 10^5 Pa
1 Pa = 1 N/m²
Then
P = 10^5 N/m²
Descending height
h = 10m
Change in force per unit square centimetre
We know that,
Pressure = Force / Area
Then,
Force / Area is the required question we are finding
Then,
Force / Area = 10^5 N / m²
So, let convert the m² to cm²
100cm = 1m
(100cm)² = (1m)²
10⁴cm² = 1m²
Then,
Force / Area = 10^5 N/m² × 1m² / 10⁴cm²
Force / Area = 10 N/cm²
So, the force per unit square centimeters is 10.