1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
skelet666 [1.2K]
3 years ago
9

Look at this picture of a frog.

Physics
2 answers:
ivanzaharov [21]3 years ago
7 0
It’s 100% biosphere
fredd [130]3 years ago
6 0

Answer:

Biosphere

Explanation:

The biosphere consist of all living organisms

You might be interested in
To practice Problem-Solving Strategy 23.2 for continuous charge distribution problems. A straight wire of length L has a positiv
Lesechka [4]

Answer:

             E = k Q / [d(d+L)]

Explanation:

As the charge distribution is continuous we must use integrals to solve the problem, using the equation of the elective field

       E = k ∫ dq/ r² r^

"k" is the Coulomb constant 8.9875 10 9 N / m2 C2, "r" is the distance from the load to the calculation point, "dq" is the charge element  and "r^" is a unit ventor from the load element to the point.

Suppose the rod is along the x-axis, let's look for the charge density per unit length, which is constant

         λ = Q / L

If we derive from the length we have

        λ = dq/dx       ⇒    dq = L dx

We have the variation of the cgarge per unit length, now let's calculate the magnitude of the electric field produced by this small segment of charge

        dE = k dq / x²2

        dE = k λ dx / x²

Let us write the integral limits, the lower is the distance from the point to the nearest end of the rod "d" and the upper is this value plus the length of the rod "del" since with these limits we have all the chosen charge consider

        E = k \int\limits^{d+L}_d {\lambda/x^{2}} \, dx

We take out the constant magnitudes and perform the integral

        E = k λ (-1/x){(-1/x)}^{d+L} _{d}

   

Evaluating

        E = k λ [ 1/d  - 1/ (d+L)]

Using   λ = Q/L

        E = k Q/L [ 1/d  - 1/ (d+L)]

 

let's use a bit of arithmetic to simplify the expression

     [ 1/d  - 1/ (d+L)]   = L /[d(d+L)]

The final result is

     E = k Q / [d(d+L)]

3 0
3 years ago
Initially, a 2.00-kg mass is whirling at the end of a string (in a circular path of radius 0.750 m) on a horizontal frictionless
drek231 [11]

Answer:

v_f = 15 \frac{m}{s}

Explanation:

We can solve this problem using conservation of angular momentum.

The angular momentum \vec{L} is

\vec{L}  = \vec{r} \times \vec{p}

where \vec{r} is the position and \vec{p} the linear momentum.

We also know that the torque is

\vec{\tau} = \frac{d\vec{L}}{dt}  = \frac{d}{dt} ( \vec{r} \times \vec{p} )

\vec{\tau} =  \frac{d}{dt}  \vec{r} \times \vec{p} +   \vec{r} \times \frac{d}{dt} \vec{p}

\vec{\tau} =  \vec{v} \times \vec{p} +   \vec{r} \times \vec{F}

but, as the linear momentum is \vec{p} = m \vec{v} this means that is parallel to the velocity, and the first term must equal zero

\vec{v} \times \vec{p}=0

so

\vec{\tau} =   \vec{r} \times \vec{F}

But, as the only horizontal force is the tension of the string, the force must be parallel to the vector position measured from the vertical rod, so

\vec{\tau}_{rod} =   0

this means, for the angular momentum measure from the rod:

\frac{d\vec{L}_{rod}}{dt} =   0

that means :

\vec{L}_{rod} = constant

So, the magnitude of initial angular momentum is :

| \vec{L}_{rod_i} | = |\vec{r}_i||\vec{p}_i| cos(\theta)

but the angle is 90°, so:

| \vec{L}_{rod_i} | = |\vec{r}_i||\vec{p}_i|

| \vec{L}_{rod_i} | = r_i * m * v_i

We know that the distance to the rod is 0.750 m, the mass 2.00 kg and the speed 5 m/s, so:

| \vec{L}_{rod_i} | = 0.750 \ m \ 2.00 \ kg \ 5 \ \frac{m}{s}

| \vec{L}_{rod_i} | = 7.5 \frac{kg m^2}{s}

For our final angular momentum we have:

| \vec{L}_{rod_f} | = r_f * m * v_f

and the radius is 0.250 m and the mass is 2.00 kg

| \vec{L}_{rod_f} | = 0.250 m * 2.00 kg * v_f

but, as the angular momentum is constant, this must be equal to the initial angular momentum

7.5 \frac{kg m^2}{s} = 0.250 m * 2.00 kg * v_f

v_f = \frac{7.5 \frac{kg m^2}{s}}{ 0.250 m * 2.00 kg}

v_f = 15 \frac{m}{s}

8 0
3 years ago
What is the relationship between the voltage across the energy
STatiana [176]
In a parallel circuit, the voltage across each of the components is the same, and the total current is the sum of the currents through each component. If two or more components are connected in parallel they have the same potential difference ( voltage) across their ends.
7 0
3 years ago
Read 2 more answers
A 73-kg boy is surfing and catches a wave which gives him an initial speed of 1.6 m/s. He then drops through a height of 1.60 m,
Gnesinka [82]

To solve this problem it is necessary to apply the concepts related to the Conservation of Energy, for which it is necessary that any decrease made through the potential energy, is equivalent to the gain given in the kinetic energy or vice versa.

Mathematically this can be expressed as

KE_i+PE_i = KE_f+PE_f

Since there is no final potential energy (the height is zero), and the initial potential energy is equivalent to the work done we have to

W = KE_f-KE_i-PE_i

W = \frac{1}{2}mv_f^2-\frac{1}{2}mv_i^2 -mgh

W =\frac{1}{2} m(v_f^2-v_i^2)-mgh

W= \frac{1}{2}(73)(8.5^2-1.6^2)-(73*9.8*1.6)

W= 1399.045J

W= 1.4kJ

Therefore the non-conservative work was done on the boy is 1.4kJ

4 0
3 years ago
Suppose that you're facing a straight current-carrying conductor, and the current is flowing toward you. The lines of magnetic f
alekssr [168]

Answer:c

Explanation:

When the direction of current is towards the observer then the magnetic field around it will be in the form of concentric circles and its direction will be anti-clockwise when viewed from the observer side.

Whenever current is flowing in a current-carrying conductor then the magnetic field is associated with it and direction of the magnetic field is given by right-hand thumb rule according to which if thumb represents the direction of current then wrapping of fingers will give the direction of the magnetic field                

8 0
3 years ago
Other questions:
  • Write equations for both the electric and magnetic fields for an electromagnetic wave in the red part of the visible spectrum th
    14·1 answer
  • What is the name of a scientist that studies the Movment of living things?
    8·1 answer
  • Points A, B, and C lie along a line from left to right, respectively. Point B is at a lower electric potential than point A. Poi
    15·1 answer
  • Four seismometers stations are the minimum needed to calculate the epicenter of an earthquake.
    8·1 answer
  • A glass object receives a positive charge of +3 nC by rubbing it with a silk cloth. In the rubbing process have protons been add
    14·1 answer
  • PLEASE HELP!!!! Explain why an object made from aluminum will not stick to a magnet​
    7·1 answer
  • Which diagram best represents the field around a positively charged particle?
    7·1 answer
  • True or False: Our food has potential energy?
    7·2 answers
  • A. You have a 10-volt parallel circuit, with 2 resistors on it. What is the voltage across the
    14·1 answer
  • 100 POINTS+BRAINLIEST: 8TH GRADE PHYSICS: “As an object moves away from the center of the earth, the force of gravity INCREASES
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!