The given question is incomplete. The complete question is :
It takes 151 kJ/mol to break an iodine-iodine single bond. Calculate the maximum wavelength of light for which an iodine-iodine single bond could be broken by absorbing a single photon. Be sure your answer has the correct number of significant digits.
Answer: 793 nm
Explanation:
The relation between energy and wavelength of light is given by Planck's equation, which is:

where,
E = energy of the light = 151 kJ= 151000 J (1kJ=1000J)
N= moles = 1 = 
h = Planck's constant = 
c = speed of light = 
= wavelength of light = ?
Putting in the values:


Thus the maximum wavelength of light for which an iodine-iodine single bond could be broken by absorbing a single photon is 793 nm
Among the choices, the unit of energy is calories. Answer in 1) is D. In 2) we are given with te mass , heat and temperature change. we just need to get the heat capacity and compare it with the following metals. The calculated heat capacity is 0.46 kJ/kg K. The answer is A. iron. In 3) we can compute the heat absorbed by the formula ΔH=mCpΔT. Cp of water is 4.18 J/g K. Answer of 3) is D. In 4) the formula used in Cp=ΔH/mΔT. Answer in 4) is A. The heat of enthalpy of fusion of ice is 80 cal/g. We convert this to J/g. Answer in 5) is B.334 J/g.
the element chlorine is represented by the symbol Cl
Yes you are correct hope you do well