<span>d
The mass is doubled which means that both the momentum and kinetic energy are also doubled. Also the normal force that's acting along with the coefficient of kinetic friction is also doubled. So the friction that's working to slow down the crate is doubled. So the crate will have double the kinetic energy that needs to be dissipated, but the rate of dissipation is also doubled, so the total time required to dissipate the kinetic energy is the same. And since both crates start out with the same velocity and since they'll lose energy (and velocity) at the same proportional rate, they'll take the same distance to slide to a stop.</span>
Air spaces are used in insulation because air is a poor conductor.
Answer:
D.vibrations that cause changes in air pressure
Explanation:
Sound is a type of wave.
A wave is a periodic disturbance/oscillation that trasmits energy without transmitting matter. There are two different types of waves:
- Transverse waves: in a transverse wave, the direction of the oscillation is perpendicular to the direction of motion of the wave. These waves are characterized by the presence of crests (points of maximum positive displacement) and troughs (points of maximum negative displacement). Examples of transverse wave are electromagnetic waves.
- Longitudinal waves: in a longitudinal wave, the direction of the oscillation is parallel to the direction of motion of the wave. These waves are characterized by the presence of compressions (regions where the density of particle is higher) and rarefactions (regions where the density of particle is lower). Examples of longitudinal waves are sound waves.
Sound waves, in particular, consist of vibrations of the particles in a medium - most commonly, air - that occur back and forth along the direction of motion of the wave. Because of these motion, the air will have areas of higher pressure (which correspond to the compressions), where the density of particles is higher, and areas of lower pressure (which correspond to the rarefactions), where density of particles is lower.
False. Inertia and mass is not described in Newton’s second law of motion but in Newton’s first law of motion. Newton’s first law of motion or sometimes referred to as the law of inertia. In Newton’s first law indicates that an object at rest will remain at rest unless acted by an unbalanced force. An object in motion continues in motion with the same speed and in the same direction unless acted upon by an unbalanced force.