Answer:
the equilibrium wage rate is 10 and the equilibrium quantity of labor is 1000 workers
Explanation:
The equilibrium wage rate and the equilibrium quantity of labor are found as the point where the equation of demand intercepts the equation of supply, so the equilibrium quantity of labor is:

15 - (1/200) L = 5 + (1/200) L
15 - 5 = (1/200) L + (1/200) L
10 = (2/200) L
(10*200)/2 = L
1000 = L
Then, the equilibrium wage rate is calculated using either the equation of demand for labor or the equation of supply of labor. If we use the equation of demand for labor, we get:
W = 15 - (1/200) L
W = 15 - (1/200) 1000
W = 10
Finally, the equilibrium wage rate is 10 and the equilibrium quantity of labor is 1000 workers
<h2>MULTIPLE CHOICES</h2>

- What is the basic unit of all matter?

- OA neutron
- OB. atom
- OC. electron
- OD. proton
- OE. nucleus

_____
- <u>Atom</u> is the smallest, <u>indivisible unit of a chemical</u> <u>element and the fundamental unit of matter</u>. It consists of a nucleus (neutrons + protons) surrounded by an electron cloud. The <u>atom</u> is the smallest unit of matter that cannot be divided chemically and is a building block with its own set of properties.
<h3>#ProvideUniqueAnswers</h3>
The way these supersaturated solutions are made is: A. The water would need to be heated to a higher temperature, which would give molecules and ions more kinetic energy, increasing solubility.
Solubility is simply a measure of how readily a substance is able to dissolve in a solvent to form a solution. Thus, a substance is soluble when it dissolves completely in a solvent and it is considered to be insoluble when it does not dissolve in a solvent or if it only dissolves partially.
A supersaturated solution can be defined as a solution that contains more solute than the equilibrium amount.
Generally, supersaturated solutions of solids in water are typically used for the creation of crystals because they are able to hold more of the solute than they would at room temperature.
In order to create these supersaturated solutions, the water should be heated to a higher temperature, so that the water molecules and ions can gain more kinetic energy and thereby increasing solubility.
In conclusion, heating the water to a higher temperature causes the water molecules and ions to gain more kinetic energy and thereby increasing solubility..
Read more: brainly.com/question/24058779