Answer:
1) k = 52 N/m
2) E = 1.0 J
3) ω = 8.1 rad/s
4) v = 1.4 m/s
Though asked for a velocity, we can only supply magnitude (speed) because we don't have enough information to determine direction.
If it happens to be the first time it is at y = - 10 cm after release, the velocity is upward.
Explanation:
Assuming the initial setup is after all transients are eliminated.
kx = mg
k = mg/x = 0.8(9.8) / 0.15
k = 52.26666.... ≈ 52 N/m
E = ½kA² = ½(52)(0.20²) = 1.045333... ≈ 1.0 J
ω = √(k/m) = √(52 / 0.8) = 8.0829... ≈ 8.1 rad/s
½mv² = ½kA² - ½kx²
v = √(k(A² - x²)/m) = √(52(0.20² - 0.10²)/0.8) = 1.39999... ≈ 1.4 m/s
Answer:
The gravity from the person's hand is weaker than the gravity from the pull of the earth
Explanation:
The gravity from the person's hand is weaker than the gravity from the pull of the earth
Answer:
Explanation:
wave length of light λ = 502 nm
screen distance D = 1.2 m
width of one fringe = 10.2 mm / 20
= .51 mm
fringe width = λ D / a , a is separation of slits
Puting the values given
.51 x 10⁻³ = 502 x 10⁻⁹ x 1.2 / a
a = 502 x 10⁻⁹ x 1.2 / .51 x 10⁻³
= 1181.17 x 10⁻⁶ m
1.18 x 10⁻³ m
= 1.18 mm .
Answer:
Because 'distance per second' is a velocity, not an acceleration.
Explanation:
Because 'distance per second' is a velocity, not an acceleration. For example, at 1 m/s an object is travelling a distance of 1 metre every second. But a rate of acceleration is a steady increase in velocity. So at 1 m/s^2, an object's velocity is increasing by 1 m/s every second.