Specific Gravity of the fluid = 1.25
Height h = 28 in
Atmospheric Pressure = 12.7 psia
Density of water = 62.4 lbm/ft^3 at 32F
Density of the Fluid = Specific Gravity of the fluid x Density of water = 1.25 x 62.4
Density of the Fluid p = 78 lbm/ft^3
Difference in pressure as we got the differential height, dP = p x g x h dP = (78 lbm/ft^3) x (32.174 ft/s^2) x (28/12 ft) [ 1 lbf / 32.174 ft/s^2] [1 ft^2 /
144in^2]
Difference in pressure = 1.26 psia
(a) Pressure in the arm that is at Higher
P = Atmospheric Pressure - Pressure difference = 12.7 - 1.26 = 11.44 psia
(b) Pressure in the tank that is at Lower
P = Atmospheric Pressure + Pressure difference = 12.7 + 1.26 = 13.96psia
epicycles were orbits within orbits used to explain discrepancies between expected and observed planetary movement, including the appearance of planets slowing down, speeding up, and moving backward.
m = mass of the box
N = normal force on the box
f = kinetic frictional force on the box
a = acceleration of the box
μ = coefficient of kinetic friction
perpendicular to incline , force equation is given as
N = mg Cos30 eq-1
kinetic frictional force is given as
f = μ N
using eq-1
f = μ mg Cos30
parallel to incline , force equation is given as
mg Sin30 - f = ma
mg Sin30 - μ mg Cos30 = ma
"m" cancel out
a = g Sin30 - μ g Cos30
inserting the values
1.20 = (9.8) Sin30 - (9.8) Cos30 μ
μ = 0.44
Answer:
The "butterfly Effect"
Explanation:
The "butterfly effect" will probably have big changes in the future.