According to the following formula, the answer is 2,300 g or 2.3 kg:
Volume (m)/Mass (m) Equals Density (p) (V)
Here, the density is 1.15 g/mL, allowing the formula described above to result in a mass of 2.00 L:
p=m/V
1.15 g/mL is equal to x g/2.00 L or x g/2,000 mL.
2,000 mL of x g = 1.15 g of g/mL
2.3 kg or 2,300 g for x g.
<h3>How many grams of glucose are in a 1000ml bag of glucose 5?</h3>
Its active ingredient is glucose. This medication includes 50 g of glucose per 1000 ml (equivalent to 55 g glucose monohydrate). 50 mg of glucose is present in 1 ml (equivalent to 55 mg glucose monohydrate). A transparent, nearly colourless solution of glucose in water is what is used in glucose intravenous infusion (BP) at 5% weight-to-volume.
Patients who are dehydrated or who have low blood sugar levels get glucose intravenously. Other medications may be diluted with glucose intravenous infusion before being injected into the body. Other diseases and disorders not covered above may also be treated with it.
learn more about glucose intravenous infusion refer
brainly.com/question/7057736
#SPJ4
Answer : The correct option is, (D) Velocity includes rate of change and direction.
Explanation :
Speed : Speed is defined as the distance traveled by an object with respect to the time taken. It is a scalar quantity that means it tell us about the magnitude of an object not direction.
Velocity : Velocity is defined as the rate of change of position of an object with respect to the time. It is a vector quantity that means it tell us about the magnitude and direction of an object.
The only difference between the speed and the velocity is that the velocity tell us about magnitude and direction but speed tell us about magnitude only.
Hence, the correct option is, (D) Velocity includes rate of change and direction.
Answer:
The average velocity is 7.5 km/h
Explanation:
Let's convert minutes to hours so our answer can be given in a common units of km/hour:
12 minutes = 12/60 hours = 0.2 hours
Now we estimate the average velocity calculating the distance travelled over the time it took:
1.5 / 0.2 km/h = 7.5 km/h
The kinetic energy gained by the air molecules is 0.0437 J
<h3 />
Given:
Mass of a coffee filter, m = 1.5 g
Height from which it is dropped, h = 3 m
Speed at ground, v = 0.7 m/s
Initially, the coffee filter has potential energy. It is given by :

P = 1.5 × 10⁻³ kg × 9.8 m/s² × 3m
P = 0.0441 J
Finally, it will have kinetic energy. It is given by :

×
× 10⁻³ × (0.7)²
E = 0.000343 J
The kinetic energy Kair did the air molecules gain from the falling coffee filter is :
E = 0.000343 - 0.0441
= 0.0437 J
So, the kinetic energy Kair did the air molecules gain from the falling coffee filter is 0.0437 J
Learn more about kinetic energy here:
brainly.com/question/8101588
#SPJ4