1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bezimeni [28]
3 years ago
11

A 49.6-kg crate rests on a level floor at a shipping dock. The coefficients of static and kinetic friction are 0.584 and 0.399,

respectively. What horizontal pushing force is required to (a) just start the crate moving and (b) slide the crate across the dock at a constant speed?
Physics
1 answer:
NISA [10]3 years ago
3 0

Answer:

(a) Force must be grater than 283.87 N

(B) Force will be equal to 193.945 N      

Explanation:

We have given mass of the crate m = 49.6 kg

Acceleration due to gravity g=9.8m/sec^2

Coefficient of static friction \mu _s=0.584

Coefficient of kinetic friction \mu _k=0.399

(a) Static friction force is given by F_S=\mu _smg=0.584\times 49.6\times 9.8=283.8707N

So to just start the crate moving we have to apply more force than 283.87 N

(B) This force will be equal to kinetic friction force

We know that kinetic friction force is given by F_k=\mu _kmg=0.399\times 49.6\times 9.8=193.945N

You might be interested in
A satellite in outer space is moving at a constant velocity of 20.5 m/s in the +y direction when one of its on board thruster tu
Katyanochek1 [597]

Answer:

a)  V_f = 25.514 m/s

b)  Q =53.46 degrees CCW from + x-axis

Explanation:

Given:

- Initial speed V_i = 20.5 j m/s

- Acceleration a = 0.31 i m/s^2

- Time duration for acceleration t = 49.0 s

Find:

(a) What is the magnitude of the satellite's velocity when the thruster turns off?

(b) What is the direction of the satellite's velocity when the thruster turns off? Give your answer as an angle measured counterclockwise from the +x-axis.

Solution:

- We can apply the kinematic equation of motion for our problem assuming a constant acceleration as given:

                                   V_f = V_i + a*t

                                   V_f = 20.5 j + 0.31 i *49

                                   V_f = 20.5 j + 15.19 i

- The magnitude of the velocity vector is given by:

                                   V_f = sqrt ( 20.5^2 + 15.19^2)

                                   V_f = sqrt(650.9861)

                                  V_f = 25.514 m/s

- The direction of the velocity vector can be computed by using x and y components of velocity found above:

                                 tan(Q) = (V_y / V_x)

                                 Q = arctan (20.5 / 15.19)

                                 Q =53.46 degrees

- The velocity vector is at angle @ 53.46 degrees CCW from the positive x-axis.

4 0
3 years ago
a race car accelerates uniformly from 18.5 m/s to 46.1m/s in 2.47 seconds detrrmine the acceleration of the car and distance tra
LenaWriter [7]

Because acceleration is constant, the acceleration of the car at any time is the same as its average acceleration over the duration. So

a=\dfrac{\Delta v}{\Delta t}=\dfrac{46.1\,\frac{\mathrm m}{\mathrm s}-18.5\,\frac{\mathrm m}{\mathrm s}}{2.47\,\mathrm s}=11.2\,\dfrac{\mathrm m}{\mathrm s^2}

Now, we have that

{v_f}^2-{v_0}^2=2a\Delta x

so we end up with a distance traveled of

\left(46.1\,\dfrac{\mathrm m}{\mathrm s}\right)^2-\left(18.5\,\dfrac{\mathrm m}{\mathrm s}\right)^2=2\left(11.2\,\dfrac{\mathrm m}{\mathrm s^2}\right)\Delta x

\implies\Delta x=79.6\,\mathrm m

6 0
3 years ago
A street light is on top of a 8 foot pole. Joe,
zubka84 [21]
8/4 = y/y-x

8y - 8x  = 4y

y = 2x

y = 2 x 4

y = 8

Hope this helps
5 0
3 years ago
Objects with unlike charges what each other
DerKrebs [107]
The answer is attract. Hope it helps! :)
6 0
3 years ago
Read 2 more answers
The greatest speed recorded by a baseball thrown by a pitcher was 162.3 km / h, obtained by Nolan Ryan in 1974. If the ball leav
Pepsi [2]

Answer:

0.96 m

Explanation:

First, convert km/h to m/s.

162.3 km/h × (1000 m/km) × (1 hr / 3600 s) = 45.08 m/s

Now find the time it takes to move 20 m horizontally.

Δx = v₀ t + ½ at²

20 m = (45.08 m/s) t + ½ (0 m/s²) t²

t = 0.4436 s

Finally, find how far the ball falls in that time.

Δy = v₀ t + ½ at²

Δy = (0 m/s) (0.4436 s) + ½ (-9.8 m/s²) (0.4436 s)²

Δy = -0.96 m

The ball will have fallen 0.96 meters.

3 0
3 years ago
Other questions:
  • Ferns that eject spores generally do so in pairs, with two spores flying off in opposite directions. The structure from which th
    9·1 answer
  • Lee pushes horizontal with a force of 79 N on a 34Kg mass for 10 m across a floor. Calculate the amount of work lee did
    9·1 answer
  • Please i need answer ASAP... Please guys
    6·1 answer
  • Density of copper is 8.96 g/cm3and density of zinc is 7.14 g/cm3. Brass is an alloy made of copper and zinc. You are given a sam
    12·2 answers
  • The atomic mass of an element is A. the sum of the protons and electrons in one atom of the element. B. twice the number of prot
    11·1 answer
  • If you have to stop on an incline, your stopping distance will be __________ on a flat surface.
    12·1 answer
  • C'est quoi le lien entre l'atmosphere et les plantes?
    9·1 answer
  • HELP!!!
    8·1 answer
  • Calculation on simple pendulum
    5·1 answer
  • Match the type of boundary with its characteristic.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!