Answer:
a) V_f = 25.514 m/s
b) Q =53.46 degrees CCW from + x-axis
Explanation:
Given:
- Initial speed V_i = 20.5 j m/s
- Acceleration a = 0.31 i m/s^2
- Time duration for acceleration t = 49.0 s
Find:
(a) What is the magnitude of the satellite's velocity when the thruster turns off?
(b) What is the direction of the satellite's velocity when the thruster turns off? Give your answer as an angle measured counterclockwise from the +x-axis.
Solution:
- We can apply the kinematic equation of motion for our problem assuming a constant acceleration as given:
V_f = V_i + a*t
V_f = 20.5 j + 0.31 i *49
V_f = 20.5 j + 15.19 i
- The magnitude of the velocity vector is given by:
V_f = sqrt ( 20.5^2 + 15.19^2)
V_f = sqrt(650.9861)
V_f = 25.514 m/s
- The direction of the velocity vector can be computed by using x and y components of velocity found above:
tan(Q) = (V_y / V_x)
Q = arctan (20.5 / 15.19)
Q =53.46 degrees
- The velocity vector is at angle @ 53.46 degrees CCW from the positive x-axis.
Because acceleration is constant, the acceleration of the car at any time is the same as its average acceleration over the duration. So

Now, we have that

so we end up with a distance traveled of


8/4 = y/y-x
8y - 8x = 4y
y = 2x
y = 2 x 4
y = 8
Hope this helps
The answer is attract. Hope it helps! :)
Answer:
0.96 m
Explanation:
First, convert km/h to m/s.
162.3 km/h × (1000 m/km) × (1 hr / 3600 s) = 45.08 m/s
Now find the time it takes to move 20 m horizontally.
Δx = v₀ t + ½ at²
20 m = (45.08 m/s) t + ½ (0 m/s²) t²
t = 0.4436 s
Finally, find how far the ball falls in that time.
Δy = v₀ t + ½ at²
Δy = (0 m/s) (0.4436 s) + ½ (-9.8 m/s²) (0.4436 s)²
Δy = -0.96 m
The ball will have fallen 0.96 meters.