Answer:
The
of a substrate will be "10 μM".
Explanation:
The given values are:

![[Substract] = 40 \ \mu M](https://tex.z-dn.net/?f=%5BSubstract%5D%20%3D%2040%20%5C%20%5Cmu%20M)

Reaction velocity, 
As we know,
⇒ ![Vo=\frac{K_{cat}[E_{t}][S]}{K_{m}+[S]}](https://tex.z-dn.net/?f=Vo%3D%5Cfrac%7BK_%7Bcat%7D%5BE_%7Bt%7D%5D%5BS%5D%7D%7BK_%7Bm%7D%2B%5BS%5D%7D)
On putting the estimated values, we get
⇒ 
⇒ 
⇒ 
On subtracting "40" from both sides, we get
⇒ 
⇒ 
According to Dalton's Atomic Theory, the <em>Law of Definite Proportion is applied when a compound is always made up by a fixed fraction of its individual elements.</em> This is manifested by the balancing of the reaction.
The reaction for this problem is:
H₂ + Cl₂ → 2 HCl
1 mol of H₂ is needed for every 1 mole of Cl₂. Assuming these are ideal gases, the moles is equal to the volume. So, if equal volumes of the reactants are available, they will produce twice the given volumes of HCl.
One mole of copper equals 6.02 × 10^23 atoms. The answer is letter C. This follows the
Avogaro’s law wherein 1 mole of a substance is equal to 6.02 x 10^23 atoms,
formula units or molecules. This is applicable to all substances.
Anion is an atom with a negative charge
so in this case it woulld be O2-