Answer:
t = 5.48 × 10⁻³ s
Explanation:
Given:
ΔV = ΔVmax × sin(2πft)
frequency, f = 16.9Hz
thus,
ΔV = ΔVmax × sin(2π×16.9×ft)
Now,
Let 'R' be the resistance
Also according to the ohms law
i = V/R
where,
i = current
V = voltage
hence,

also, given at time 't' the current in the circuit is 55.0% of the peak current
thus

thus,
or
or
or
t = 5.48 × 10⁻³ s (Answer)
The magnitude of the magnetic dipole moment of the bar magnet is 1.2 Am²
<h3>
Magnetic dipole moment of the bar magnet</h3>
The magnitude of the magnetic dipole moment of the bar magnet at distance from its axis is calculated as follows;

where;
- B is magnetic field
- m is dipole moment
- μ is permeability of free space
m = (4π x 0.1³ x 2.4 x 10⁻⁴)/(2 x 4π x 10⁻⁷)
m = 1.2 Am²
The complete question is below:
What is the magnitude of the magnetic dipole moment of the bar magnet from 0.1 m of its axis and magnetic field strength of 2.4 x 10⁻⁴ T.
Learn more about dipole moment here: brainly.com/question/27590192
#SPJ11
1.Record her observation with the time it was hot.
2. Gather info about the pavement and its surroundings. Find out what it's made of and what its temp. is at different times of the day.
3. Come up with a hypothesis about why it is hot.
4. Design an experiment to test the hypothesis. If she thinks the Sun is responsible (which she should b smart enough to know), keep it covered during the day time and check it's temp.
5. Come up with a conclusion. If her hypothesis is not supported, design a new experiment or gather more info.
Answer:
B. blocks 2 & 3.
Explanation:
Block 1 has equal & opposite forces acting on it.
Block 2 has 5N on one side, 3N on the other. It will move in the direction the 5N of force is pushing.
Block 3 has no opposing force.
Explanation:
The speed of sound wave only depends on the property of the medium like density and the bulk modulus of the medium particle. The speed of sound also depends on the temperature of the medium.
On comparing sound waves with different frequencies and wavelengths traveling through air, the speed of the wave doesn’t depend on the frequency or the wavelength. Hence, the correct option is (1).