If the net force on a block is zero, the block will move at constant velocity
Explanation:
We can answer this question by applying Newton's second law of motion, which states that the net force on an object is equal to the product between its mass and its acceleration:
(1)
where
is the net force on the object
m is its mass
a is its acceleration
In this problem, we have a block, and the net force on it is zero:

According to eq.(1), this also implies that

So, the acceleration of the block is zero.
However, acceleration is the rate of change of velocity of a body:

where
is the change in velocity in a time of
. Since the acceleration is zero, this means that
, and therefore the velocity of the object is constant.
Learn more about Newton's second law:
brainly.com/question/3820012
#LearnwithBrainly
Human lack chlorophyll, which is the function that collects energy from the Sun to conduct photosynthesis.
Answer:
$ 1.1
Explanation:
From the question given above, the following data were obtained:
Cost per kWh = $ 0.1
Current (I) = 10 A
Voltage (V) = 220 V
Time (t) = 5 h
Cost of operation =?
Next, we shall determine the power the electric oven. This can be obtained as follow:
Current (I) = 10 A
Voltage = 220 V
Power (P) =?
P = IV
P = 10 × 220
P = 2200 W
Next, we shall convert 2200 W to KW. This can be obtained as follow:
1000 W = 1 KW
Therefore,
2200 W = 2200 W × 1 KW / 1000 W
2200 W = 2.2 KW
Thus, 2200 W is equivalent to 2.2 KW.
Next, we shall determine the energy consumed by the electric oven. This can be obtained as follow:
Power (P) = 2.2 KW
Time (t) = 5 h
Energy (E) =?
E = Pt
E = 2.2 × 5
E = 11 KWh
Finally, we shall determine the cost of operation. This can be obtained as follow:
1 KWh cost $ 0.1
Therefore,
11 KWh will cost = 11 × 0.1
11 KWh will cost = $ 1.1
Therefore, the cost of operating the electric oven is $ 1.1
Answer:
The correct answer to the following question will be "41.87 m".
Explanation:
The given values are:
The speed of trooper = 
The velocity of red car = 
Now,
A red car goes as far as possible until the speed or velocity of the troops is the same as that of of the red car at
(∵
)

then,
The distance covered by trooper,


The distance covered by red car,
= 
= 
Maximum distance = 
=